Data yang diberikan sejumlah 42994 responden yang valid, digunakan 6 variabel dari 21 variabel yang ada.
Kesehatan organisasi kita bagi dua kategori yang sehat dan kurang sehat dengan cut off (median dari datanya)
Berikut penggalan datanya
## 'data.frame': 42994 obs. of 21 variables:
## $ ID : int 35262 38325 37526 17042 21125 271 292 734 1699 1791 ...
## $ Eselon1 : int 3 3 3 3 5 6 1 6 1 5 ...
## $ Eselon2 : int 140 126 119 137 161 105 6 105 8 157 ...
## $ Satker : int 653 411 334 596 950 193 1098 193 1100 901 ...
## $ TipeUnit : int 2 2 2 2 2 2 1 2 1 2 ...
## $ LevelSatker : int 4 3 3 3 2 3 2 3 2 3 ...
## $ Usia : int 55 32 24 44 57 28 40 42 32 57 ...
## $ JenisKelamin : int 2 2 2 1 2 2 1 2 1 2 ...
## $ Agama : int 3 3 1 1 1 1 2 1 1 1 ...
## $ StatusNikah : int 2 2 1 1 2 2 2 2 2 2 ...
## $ JumlahAnak : int 1 0 0 0 2 0 1 1 1 1 ...
## $ Jabatan : int 4 7 7 7 7 7 7 7 7 7 ...
## $ GolonganRuang : int 9 5 2 6 9 5 5 5 5 7 ...
## $ Golongan : int 3 2 2 3 3 2 2 2 2 3 ...
## $ Pendidikan : int 8 8 4 8 8 11 3 3 6 3 ...
## $ MasaKerja : int 33 13 4 20 32 7 16 23 10 32 ...
## $ ProvinsiKantor: int 25 6 18 14 13 11 6 11 6 9 ...
## $ HomeBase : int 1 1 3 2 1 1 3 3 1 1 ...
## $ LolosUji : int 1 1 1 1 1 1 1 1 1 1 ...
## $ TOMO : num 125 125 120 115 115 ...
## $ MOFIN : num 92.2 60.8 50 96.2 100 ...
## y JenKel HomeBase TOMO MasaKerja Usia
## 1 0 2 1 125.0 33 55
## 2 0 2 1 125.0 13 32
## 3 0 2 3 120.0 4 24
## 4 1 1 2 115.0 20 44
## 5 1 2 1 115.0 32 57
## 6 0 2 1 112.5 7 28
Hasil Perhitungan
##
## Call:
## glm(formula = y ~ ., family = binomial(link = "logit"), data = df)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.4903 -1.0064 0.4554 1.0014 2.2192
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.1217333 0.1408741 -22.160 <2e-16 ***
## JenKel2 0.0483742 0.0242452 1.995 0.0460 *
## HomeBase1 -0.0825755 0.1078258 -0.766 0.4438
## HomeBase2 -0.0244977 0.1149229 -0.213 0.8312
## HomeBase3 -0.2082582 0.1090555 -1.910 0.0562 .
## TOMO 0.0276633 0.0004422 62.559 <2e-16 ***
## MasaKerja 0.0081350 0.0037613 2.163 0.0306 *
## Usia 0.0451701 0.0035475 12.733 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 59570 on 42972 degrees of freedom
## Residual deviance: 51696 on 42965 degrees of freedom
## (21 observations deleted due to missingness)
## AIC: 51712
##
## Number of Fisher Scoring iterations: 4
sjp.glm(fit)
## Waiting for profiling to be done...
sjp.glm(fit, trns.ticks = FALSE)
## Waiting for profiling to be done...
sjp.glm(fit, sort.est = FALSE)
## Waiting for profiling to be done...
sjp.glm(fit, type = "slope")
sjp.glm(fit, type = "slope", facet.grid = FALSE, show.ci = TRUE, vars = "Usia")
sjp.glm(fit, type = "eff")
p <- sjp.glm(fit, type = "eff", facet.grid = FALSE,
show.ci = TRUE, prnt.plot = FALSE)$plot.list
# plot all marginal effects, as grid, proper x-axes
# also, set margins for this example
plot_grid(p, margin = c(0.3, 0.3, 0.3, 0.3))
sjp.glm(fit, type = "pred", vars = "Usia")
sjp.glm(fit, type = "pred", vars = "TOMO")
sjp.glm(fit, type = "pred", vars = "HomeBase")
sjp.glm(fit, type = "pred", vars = "JenKel")
sjp.glm(fit, type = "pred", vars = "MasaKerja")
Heru Wiryanto, 25 September 2017