Introduction
This visualisation gives insight about the distribution of climatic temperature over different cities in Australia. The data for the visualisation has been taken from: Bureau of Meteorology is Australia’s national weather, climate and water agency.
library(readr)
library(googleVis)
library(dplyr)
op <- options(gvis.plot.tag="chart")
Sydney <- read_csv("~/Downloads/Sydney.csv",
col_types = cols(Date = col_date(format = "%d/%m/%Y")))
Syd <- gvisCalendar(Sydney,
datevar="Date",
numvar="Temperature",
options=list(
title="Daily Temperature in Sydney",
height=120,
calendar="{yearLabel: { fontName: 'Times-Roman',
fontSize: 32, color: '#1A8763', bold: true},
cellSize: 8,
cellColor: { stroke: 'red', strokeOpacity: 0.2 },
focusedCellColor: {stroke:'red'}}")
)
Perth <- read_csv("~/Downloads/Perth.csv",
col_types = cols(Date = col_date(format = "%d/%m/%Y")))
Per <- gvisCalendar(Perth,
datevar="Date",
numvar="Temperature",
options=list(
title="Daily Temperature in Perth",
height=120,
calendar="{yearLabel: { fontName: 'Times-Roman',
fontSize: 32, color: '#1A8763', bold: true},
cellSize: 8,
cellColor: { stroke: 'red', strokeOpacity: 0.2 },
focusedCellColor: {stroke:'red'}}")
)
Brisbane <- read_csv("~/Downloads/Brisbane.csv",
col_types = cols(Date = col_date(format = "%d/%m/%Y")))
Bri <- gvisCalendar(Brisbane,
datevar="Date",
numvar="Temperature",
options=list(
title="Daily Temperature in Brisbane",
height=120,
calendar="{yearLabel: { fontName: 'Times-Roman',
fontSize: 32, color: '#1A8763', bold: true},
cellSize: 8,
cellColor: { stroke: 'red', strokeOpacity: 0.2 },
focusedCellColor: {stroke:'red'}}")
)
Adelaide <- read_csv("~/Downloads/Adelaide.csv",
col_types = cols(Date = col_date(format = "%d/%m/%Y")))
Ade <- gvisCalendar(Adelaide,
datevar="Date",
numvar="Temperature",
options=list(
title="Daily Temperature in Adelaide",
height=120,
calendar="{yearLabel: { fontName: 'Times-Roman',
fontSize: 32, color: '#1A8763', bold: true},
cellSize: 8,
cellColor: { stroke: 'red', strokeOpacity: 0.2 },
focusedCellColor: {stroke:'red'}}")
)
Melbourne <- read_csv("~/Downloads/Melbourne.csv",
col_types = cols(Date = col_date(format = "%d/%m/%Y")))
Mel <- gvisCalendar(Melbourne,
datevar="Date",
numvar="Temperature",
options=list(
title="Daily Temperature in Melbourne",
height=120,
calendar="{yearLabel: { fontName: 'Times-Roman',
fontSize: 32, color: '#1A8763', bold: true},
cellSize: 8,
cellColor: { stroke: 'red', strokeOpacity: 0.2 },
focusedCellColor: {stroke:'red'}}")
)
Darwin <- read_csv("~/Downloads/Darwin.csv",
col_types = cols(Date = col_date(format = "%d/%m/%Y")))
Dar <- gvisCalendar(Darwin,
datevar="Date",
numvar="Temperature",
options=list(
title="Daily Temperature in Darwin",
height=120,
calendar="{yearLabel: { fontName: 'Times-Roman',
fontSize: 32, color: '#1A8763', bold: true},
cellSize: 8,
cellColor: { stroke: 'red', strokeOpacity: 0.2 },
focusedCellColor: {stroke:'red'}}")
)
Coordinates <- read_csv("~/Downloads/Coordinates.csv")
google.location <- paste(Coordinates$Lat, Coordinates$Long, sep = ":")
monitors.google <- data.frame(Coordinates, google.location)
gmap <- gvisGeoChart(monitors.google, "google.location",
colorvar="Value",
hovervar = "Place",
options=list(width=500, height=300,region= "AU"))
GT <- gvisMerge(Syd,Dar, horizontal=TRUE)
GT1 <- gvisMerge(Per,Mel, horizontal=TRUE)
GT2 <- gvisMerge(Ade,Bri, horizontal=TRUE)
GT3 <- gvisMerge(GT,GT1, horizontal=FALSE)
GT4 <- gvisMerge(GT3,GT2, horizontal=FALSE)