Paquetes
library("tidyverse")
library("ggthemes")
library("ggplot2")
abro mi df
x <- read.csv("Epworth 5to.csv", header = TRUE, sep=",")
str(x)
'data.frame': 40 obs. of 13 variables:
$ n : int 5 6 13 14 16 18 21 22 23 24 ...
$ Sexo : Factor w/ 2 levels "F","M": 2 2 2 2 2 2 2 2 2 2 ...
$ Edad : int 27 23 22 23 25 24 23 23 22 26 ...
$ P1 : int 2 2 1 1 2 2 1 2 1 1 ...
$ P2 : int 1 1 0 0 1 1 2 0 2 0 ...
$ P3 : int 0 1 1 0 0 2 1 1 0 0 ...
$ P4 : int 1 2 3 2 2 3 0 2 1 1 ...
$ P5 : int 1 3 3 3 3 3 3 3 3 2 ...
$ P6 : int 0 1 1 0 1 3 2 1 1 1 ...
$ P7 : int 0 1 0 0 0 1 0 0 0 0 ...
$ P8 : int 0 0 0 0 0 1 0 0 0 0 ...
$ PT : int 5 11 9 6 9 16 9 9 8 5 ...
$ Pje.total: int 0 2 1 0 1 3 1 1 1 0 ...
summary(x)
n Sexo Edad P1 P2 P3 P4
Min. : 1.00 F:23 Min. :22.00 Min. :0.00 Min. :0.00 Min. :0.000 Min. :0.000
1st Qu.:10.75 M:17 1st Qu.:22.75 1st Qu.:1.00 1st Qu.:1.00 1st Qu.:0.000 1st Qu.:1.000
Median :20.50 Median :24.00 Median :2.00 Median :1.00 Median :0.500 Median :2.000
Mean :20.50 Mean :24.12 Mean :1.65 Mean :1.25 Mean :0.725 Mean :1.775
3rd Qu.:30.25 3rd Qu.:25.00 3rd Qu.:2.00 3rd Qu.:2.00 3rd Qu.:1.000 3rd Qu.:3.000
Max. :40.00 Max. :31.00 Max. :3.00 Max. :3.00 Max. :3.000 Max. :3.000
P5 P6 P7 P8 PT Pje.total
Min. :0.0 Min. :0.0 Min. :0.00 Min. :0.000 Min. : 3.00 Min. :0.00
1st Qu.:2.0 1st Qu.:1.0 1st Qu.:0.00 1st Qu.:0.000 1st Qu.: 8.00 1st Qu.:1.00
Median :3.0 Median :1.0 Median :0.00 Median :0.000 Median : 9.00 Median :1.00
Mean :2.5 Mean :1.5 Mean :0.55 Mean :0.175 Mean :10.12 Mean :1.35
3rd Qu.:3.0 3rd Qu.:2.0 3rd Qu.:1.00 3rd Qu.:0.000 3rd Qu.:12.25 3rd Qu.:2.00
Max. :3.0 Max. :3.0 Max. :3.00 Max. :1.000 Max. :20.00 Max. :3.00
x %>%
group_by(Sexo) %>%
summarise(n=n(), Promedio = mean(Edad), DE = sd(Edad)) %>%
ungroup()
tabla1 <- x %>%
group_by(Sexo) %>%
summarise(n=n(), Promedio = mean(Edad), DE = sd(Edad)) %>%
ungroup()
write.table(tabla1)
"Sexo" "n" "Promedio" "DE"
"1" "F" 23 24.1739130434783 2.08134951660616
"2" "M" 17 24.0588235294118 2.13514016622136
x %>%
group_by(PT) %>%
summarise(n=n(), Promedio = mean(Pje.total), DE = sd(Pje.total), Mediana=median(Pje.total)) %>%
ungroup()
main=x$PT
Grafico por boxplot entre sexo y Pje.total
boxplot(x$PT~x$Sexo, xlab="Sexo", ylab="Puntaje total", main="Puntaje total segun sexo")

x %>%
ggplot(aes(x=Sexo, y=PT)) +
geom_boxplot() +
theme_economist() +
ggtitle("Puntaje total segun sexo")

Existe diferencia significativa entre sexo y el puntaje total ??????
t.test(x$Pje.total~x$Sexo)
Welch Two Sample t-test
data: x$Pje.total by x$Sexo
t = 1.321, df = 35.888, p-value = 0.1948
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.2163477 1.0245318
sample estimates:
mean in group F mean in group M
1.521739 1.117647
Hago tabla
tabla2 <- matrix(c(4, 5, 7, 6, 8, 5, 4, 1), ncol = 4)
Coloco nombres a las columnas y filas
colnames(tabla2) <- c("No presenta", "Leve","Moderada", "Severa")
rownames(tabla2) <- c("Hombre", "Mujer")
Generano la tabla
tabla2
No presenta Leve Moderada Severa
Hombre 4 7 8 4
Mujer 5 6 5 1
Grafico tabla en mosaico con color
mosaicplot(tabla2, shade=T)

Calculo proporciones
prop.table(tabla2)*100
No presenta Leve Moderada Severa
Hombre 10.0 17.5 20.0 10.0
Mujer 12.5 15.0 12.5 2.5
d <- prop.table(tabla2)*100
mosaicplot(d, shade = T)

boxplot(tabla2)

Analisis de chi
chisq.test(tabla2)
Chi-squared approximation may be incorrect
Pearson's Chi-squared test
data: tabla2
X-squared = 1.8213, df = 3, p-value = 0.6103
LS0tCnRpdGxlOiAiMjAxN19jb25ncmVzbyBtZWQgc3Vlbm8iCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KIyBQYXF1ZXRlcwpgYGB7cn0KbGlicmFyeSgidGlkeXZlcnNlIikKbGlicmFyeSgiZ2d0aGVtZXMiKQpsaWJyYXJ5KCJnZ3Bsb3QyIikKYGBgCiMgYWJybyBtaSBkZgpgYGB7cn0KeCA8LSByZWFkLmNzdigiRXB3b3J0aCA1dG8uY3N2IiwgaGVhZGVyID0gVFJVRSwgc2VwPSIsIikKc3RyKHgpCnN1bW1hcnkoeCkKYGBgCgpgYGB7cn0KeCAlPiUgCiAgZ3JvdXBfYnkoU2V4bykgJT4lIAogIHN1bW1hcmlzZShuPW4oKSwgUHJvbWVkaW8gPSBtZWFuKEVkYWQpLCBERSA9IHNkKEVkYWQpKSAlPiUgCiAgdW5ncm91cCgpCmBgYApgYGB7cn0KdGFibGExIDwtIHggJT4lIAogIGdyb3VwX2J5KFNleG8pICU+JSAKICBzdW1tYXJpc2Uobj1uKCksIFByb21lZGlvID0gbWVhbihFZGFkKSwgREUgPSBzZChFZGFkKSkgJT4lIAogIHVuZ3JvdXAoKQpgYGAKCmBgYHtyfQp3cml0ZS50YWJsZSh0YWJsYTEpCmBgYAoKYGBge3J9CnggJT4lIAogIGdyb3VwX2J5KFBUKSAlPiUgCiAgc3VtbWFyaXNlKG49bigpLCBQcm9tZWRpbyA9IG1lYW4oUGplLnRvdGFsKSwgREUgPSBzZChQamUudG90YWwpLCBNZWRpYW5hPW1lZGlhbihQamUudG90YWwpKSAlPiUgCiAgdW5ncm91cCgpCmBgYApgYGB7cn0KbWFpbj14JFBUCmBgYAojR3JhZmljbyBwb3IgYm94cGxvdCBlbnRyZSBzZXhvIHkgUGplLnRvdGFsCmBgYHtyfQpib3hwbG90KHgkUFR+eCRTZXhvLCB4bGFiPSJTZXhvIiwgeWxhYj0iUHVudGFqZSB0b3RhbCIsIG1haW49IlB1bnRhamUgdG90YWwgc2VndW4gc2V4byIpCmBgYApgYGB7cn0KeCAlPiUgCmdncGxvdChhZXMoeD1TZXhvLCB5PVBUKSkgKwogIGdlb21fYm94cGxvdCgpICsKICB0aGVtZV9lY29ub21pc3QoKSArCiAgZ2d0aXRsZSgiUHVudGFqZSB0b3RhbCBzZWd1biBzZXhvIikKYGBgCiNFeGlzdGUgZGlmZXJlbmNpYSBzaWduaWZpY2F0aXZhIGVudHJlIHNleG8geSBlbCBwdW50YWplIHRvdGFsID8/Pz8/PyAKYGBge3J9CnQudGVzdCh4JFBqZS50b3RhbH54JFNleG8pCmBgYAojSGFnbyB0YWJsYSAKYGBge3J9CnRhYmxhMiA8LSBtYXRyaXgoYyg0LCA1LCA3LCA2LCA4LCA1LCA0LCAxKSwgbmNvbCA9IDQpCmBgYAojQ29sb2NvIG5vbWJyZXMgYSBsYXMgY29sdW1uYXMgeSBmaWxhcwpgYGB7cn0KY29sbmFtZXModGFibGEyKSA8LSBjKCJObyBwcmVzZW50YSIsICJMZXZlIiwiTW9kZXJhZGEiLCAiU2V2ZXJhIikKcm93bmFtZXModGFibGEyKSA8LSBjKCJIb21icmUiLCAiTXVqZXIiKQpgYGAKI0dlbmVyYW5vIGxhIHRhYmxhCmBgYHtyfQp0YWJsYTIKYGBgCiNHcmFmaWNvIHRhYmxhIGVuIG1vc2FpY28gY29uIGNvbG9yCmBgYHtyfQptb3NhaWNwbG90KHRhYmxhMiwgc2hhZGU9VCkKYGBgCiNDYWxjdWxvIHByb3BvcmNpb25lcwpgYGB7cn0KcHJvcC50YWJsZSh0YWJsYTIpKjEwMApgYGAKYGBge3J9CmQgPC0gcHJvcC50YWJsZSh0YWJsYTIpKjEwMApgYGAKYGBge3J9Cm1vc2FpY3Bsb3QoZCwgc2hhZGUgPSBUKQpgYGAKYGBge3J9CmJveHBsb3QodGFibGEyKQpgYGAKCiNBbmFsaXNpcyBkZSBjaGkKYGBge3J9CmNoaXNxLnRlc3QodGFibGEyKQpgYGAKCgo=