\(G/M/1\) queue system, continuous uniformly distributed interarrival time with minimum 1 and maximum 5, and service rate \(\mu\) = 0.4 per minute.
\(z = \int_{0}^{\infty}e^{-\mu t (1-z)}g(t)dt\)
\(g(t) = 1/(b-a) \textrm{, if } a \leq t \leq b\\\)
\(g(t) = \begin{cases} 1/(b-a) & \textrm{if } a \leq t \leq b\\ 0 & \textrm{otherwise} \end{cases}\)
\(z = \int_{0}^{\infty}e^{-\mu t (1-z)} \frac{1}{b-a}dt\)
\(z = -\frac{1}{\mu(b-a)(1-z)}(e^{-\mu(1-z)b} - e^{-\mu(1-z)a})\)
\(z = -\frac{1}{0.4(5-1)(1-z)}(e^{-0.4(1-z)5} - e^{-0.4(1-z)})\)
\(z = -\frac{1}{1.6(1-z)}(e^{-2(1-z)} - e^{-0.4(1-z)})\)
\(W = \frac{1}{\mu(1-z)}\)
\(1/\lambda = (a+b)/2 = (1 + 5)/2 = 3\)
\(\lambda = 1/3\)
eqn <- function (z) {
return(z + ((1 / (1.6 * (1 - z))) * (exp(-2 * (1 - z)) - exp(-0.4 * (1-z)))))
}
uniroot(eqn, c(0, 1), f.upper = 1, tol = 1e-16)
## $root
## [1] 0.723485
##
## $f.root
## [1] 0
##
## $iter
## [1] 11
##
## $init.it
## [1] NA
##
## $estim.prec
## [1] 8.615043e-05
z <- uniroot(eqn, c(0, 1), f.upper = 1, tol = 1e-16)$root
mu <- 0.4
lambda <- 1/3
W = 1 / (mu * (1 - z))
rho <- lambda / mu
W_q <- (lambda / mu^2) / (2 * (1 - (lambda / mu)))
L_q <- lambda * W_q
W = W_q + (1 / mu)
L = lambda * W
knitr::kable(data.frame (z = z, W_q = W_q, L_q = L_q, W = W, L = L, rho = rho))
| z | W_q | L_q | W | L | rho |
|---|---|---|---|---|---|
| 0.723485 | 6.25 | 2.083333 | 8.75 | 2.916667 | 0.8333333 |
Results of single run of 52-week long simulation in Simio