library("readxl")

##Import untidy excel file
untidy<-read_excel("Untidy1.xlsx")
untidy
## # A tibble: 3 x 4
##   `Political Affiliation` x2015 x2016 x2017
##                     <chr> <dbl> <dbl> <dbl>
## 1               Repulican    12    10     9
## 2                Democrat    14    12     6
## 3             Independent     6    12     3
## Import tidy excel file
tidy<-read_excel("tidy1.xlsx")
tidy
## # A tibble: 81 x 2
##    Republican `2015`
##         <chr>  <dbl>
##  1 Republican   2015
##  2 Republican   2015
##  3 Republican   2015
##  4 Republican   2015
##  5 Republican   2015
##  6 Republican   2015
##  7 Republican   2015
##  8 Republican   2015
##  9 Republican   2015
## 10 Republican   2015
## # ... with 71 more rows
## Tidy file #1 10 observation, 2 variables
dataset<-read.csv("dataset1.csv")
dataset
##         program    sex
## 1         auto    male
## 2         auto    male
## 3         auto    male
## 4         auto    male
## 5         auto    male
## 6         auto    male
## 7         auto    male
## 8         auto    male
## 9         auto    male
## 10        auto    male
## 11        auto    male
## 12        auto    male
## 13        auto    male
## 14        auto    male
## 15        auto    male
## 16        auto    male
## 17        auto    male
## 18        auto    male
## 19        auto    male
## 20        auto    male
## 21        auto    male
## 22        auto    male
## 23        auto    male
## 24        auto    male
## 25        auto    male
## 26        auto    male
## 27        auto    male
## 28        auto    male
## 29        auto    male
## 30        auto    male
## 31        auto    male
## 32        auto    male
## 33        auto    male
## 34        auto    male
## 35        auto    male
## 36        auto    male
## 37        auto  female
## 38        auto  female
## 39        auto  female
## 40        auto  female
## 41    carpentry   male
## 42    carpentry   male
## 43    carpentry   male
## 44    carpentry   male
## 45    carpentry   male
## 46    carpentry   male
## 47    carpentry   male
## 48    carpentry   male
## 49    carpentry   male
## 50    carpentry   male
## 51    carpentry   male
## 52    carpentry   male
## 53    carpentry   male
## 54    carpentry   male
## 55    carpentry   male
## 56    carpentry   male
## 57    carpentry   male
## 58    carpentry   male
## 59    carpentry   male
## 60    carpentry   male
## 61    carpentry   male
## 62    carpentry   male
## 63    carpentry   male
## 64    carpentry   male
## 65    carpentry   male
## 66    carpentry   male
## 67    carpentry   male
## 68    carpentry   male
## 69    carpentry   male
## 70    carpentry   male
## 71    carpentry   male
## 72    carpentry   male
## 73    carpentry female
## 74    carpentry female
## 75      welding   male
## 76      welding   male
## 77      welding   male
## 78      welding   male
## 79      welding   male
## 80      welding   male
## 81      welding   male
## 82      welding   male
## 83      welding   male
## 84      welding   male
## 85      welding   male
## 86      welding   male
## 87      welding   male
## 88      welding   male
## 89      welding   male
## 90      welding   male
## 91      welding   male
## 92      welding   male
## 93      welding   male
## 94      welding   male
## 95      welding   male
## 96      welding   male
## 97      welding   male
## 98      welding   male
## 99      welding   male
## 100     welding   male
## 101     welding   male
## 102     welding   male
## 103     welding   male
## 104     welding   male
## 105     welding   male
## 106     welding   male
## 107     welding   male
## 108     welding   male
## 109     welding female
## 110     welding female
## 111     welding female
## 112     welding female
## 113        food   male
## 114        food   male
## 115        food   male
## 116        food   male
## 117        food   male
## 118        food   male
## 119        food   male
## 120        food   male
## 121        food   male
## 122        food   male
## 123        food   male
## 124        food   male
## 125        food   male
## 126        food female
## 127        food female
## 128        food female
## 129        food female
## 130        food female
## 131        food female
## 132        food female
## 133        food female
## 134        food female
## 135        food female
## 136        food female
## 137   bussiness   male
## 138   bussiness   male
## 139   bussiness female
## 140   bussiness female
## 141   bussiness female
## 142   bussiness female
## 143   bussiness female
## 144   bussiness female
## 145   bussiness female
## 146   bussiness female
## 147       cosmo female
## 148       cosmo female
## 149       cosmo female
## 150       cosmo female
## 151       cosmo female
## 152       cosmo female
## 153       cosmo female
## 154       cosmo female
## 155       cosmo female
## 156       cosmo female
## 157       cosmo female
## 158       cosmo female
## 159       cosmo female
## 160       cosmo female
## 161       cosmo female
## 162       cosmo female
## 163       cosmo female
## 164       cosmo female
## 165       cosmo female
## 166       cosmo female
## 167       cosmo female
## 168       cosmo female
## 169       cosmo female
## 170       cosmo female
## 171       cosmo female
## 172       cosmo female
## 173       cosmo female
## 174       cosmo female
## 175       cosmo female
## 176       cosmo female
## 177       cosmo female
## 178       cosmo female
## 179       cosmo female
## 180       cosmo female
## 181       cosmo female
## 182       cosmo female
## 183       cosmo female
## 184    security   male
## 185    security   male
## 186    security   male
## 187    security   male
## 188    security   male
## 189    security   male
## 190    security   male
## 191    security   male
## 192    security   male
## 193    security   male
## 194    security   male
## 195    security   male
## 196    security   male
## 197    security   male
## 198    security   male
## 199    security   male
## 200    security   male
## 201    security   male
## 202    security   male
## 203    security   male
## 204    security   male
## 205    security   male
## 206    security   male
## 207    security   male
## 208    security female
## 209    security female
## 210    security female
## 211  electrical   male
## 212  electrical   male
## 213  electrical   male
## 214  electrical   male
## 215  electrical   male
## 216  electrical   male
## 217  electrical   male
## 218  electrical   male
## 219  electrical   male
## 220  electrical   male
## 221  electrical   male
## 222  electrical   male
## 223  electrical   male
## 224  electrical   male
## 225  electrical   male
## 226  electrical   male
## 227  electrical   male
## 228  electrical   male
## 229  electrical   male
## 230  electrical   male
## 231  electrical   male
## 232  electrical   male
## 233  electrical   male
## 234  electrical   male
## 235  electrical   male
## 236 power_equip   male
## 237 power_equip   male
## 238 power_equip   male
## 239 power_equip   male
## 240 power_equip   male
## 241 power_equip   male
## 242 power_equip   male
## 243 power_equip   male
## 244 power_equip   male
## 245 power_equip   male
## 246 power_equip   male
## 247 power_equip   male
## 248 power_equip   male
## 249 power_equip   male
## 250 power_equip   male
## 251 power_equip   male
## 252 power_equip   male
## 253 power_equip   male
## 254 power_equip   male
## 255 power_equip   male
## 256 power_equip   male
## 257 power_equip   male
## 258 power_equip   male
## 259 power_equip   male
## 260 power_equip   male
## 261 power_equip   male
## 262 power_equip   male
## 263 power_equip   male
## 264 power_equip   male
## 265   collision   male
## 266   collision   male
## 267   collision   male
## 268   collision   male
## 269   collision   male
## 270   collision   male
## 271   collision   male
## 272   collision   male
## 273   collision   male
## 274   collision   male
## 275   collision   male
## 276   collision   male
## 277   collision   male
## 278   collision   male
## 279   collision   male
## 280   collision   male
## 281   collision female
## 282   collision female
## 283   collision female
# This dataset was collected from my CTC it is the number of
# nontraditional v. traditional students in 10 of our 13 Programs of Study
#The variables represent the number of males and females in each program.
#The level of measurement id "nominal"

## Tidy file #2 10 observations, 2 variables
dataset2<-read.csv("dataset2.csv")
dataset2
##               player year hr
## 1       mark trumbro 2015 22
## 2       mark trumbro 2016 47
## 3        nelson cruz 2015 44
## 4        nelson cruz 2016 43
## 5       brian dozoer 2015 28
## 6       brian dozoer 2016 42
## 7        khris davis 2015 27
## 8        khris davis 2016 42
## 9  edwin encarnacion 2015 39
## 10 edwin encarnacion 2016 42
## 11     nolan arenado 2015 42
## 12     nolan arenado 2016 41
## 13       chris davis 2015 24
## 14       chris davis 2016 40
## 15      todd frazier 2015 35
## 16      todd frazier 2016 39
## 17     robinson cano 2015 21
## 18     robinson cano 2016 39
# This data set was collected from MLB.com it is the top ten home run hitters in 2016 compared to 
# their homeruns from 2015.
# The variables are the year in which the homeruns were hit and the amount of homeruns each player hit in
# a perticular year. 
#The level of measurement is "interval" 


## Tidy file # 3 10 observations, 2 variables.
library(readr)
dataset3 <- read_csv("~/R Projects/Practice Assignment 4/Practice Assignment 4/dataset3.csv")
## Parsed with column specification:
## cols(
##   scranton = col_character(),
##   republican = col_character()
## )
dataset3
## # A tibble: 67 x 2
##        scranton republican
##           <chr>      <chr>
##  1     scranton republican
##  2     scranton republican
##  3     scranton   democrat
##  4     scranton   democrat
##  5     scranton   democrat
##  6     scranton   democrat
##  7 philidelphia republican
##  8 philidelphia republican
##  9 philidelphia   democrat
## 10 philidelphia   democrat
## # ... with 57 more rows
# This data set represents the cities I live within 2 hours of and "fictishous numbers" representing
# the number of deomcrates and rebulicans in the cities.
# The variables represnt the number of rebublicans vs. the number of democrates in each city.
# The level of measurement is the lowest level "nominal"