data()
data(iris)
View(iris)
class(iris)
## [1] "data.frame"
str(iris)
## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
summary(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
## Species
## setosa :50
## versicolor:50
## virginica :50
##
##
##
head(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
head(iris, 10)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## 7 4.6 3.4 1.4 0.3 setosa
## 8 5.0 3.4 1.5 0.2 setosa
## 9 4.4 2.9 1.4 0.2 setosa
## 10 4.9 3.1 1.5 0.1 setosa
# head(iris, -10)
?head
## starting httpd help server ... done
help(head)
head(iris[ 1 , ])
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
head(iris[ c(1,2,3) , ])
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
head(iris[ 1:3 , ])
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
head(iris[ 1 , 1 ])
## [1] 5.1
head(iris[ 1:3 , 1 ])
## [1] 5.1 4.9 4.7
head(iris[ 1:3 ,"Sepal.Length" ])
## [1] 5.1 4.9 4.7
head(iris[ , 1:2])
## Sepal.Length Sepal.Width
## 1 5.1 3.5
## 2 4.9 3.0
## 3 4.7 3.2
## 4 4.6 3.1
## 5 5.0 3.6
## 6 5.4 3.9
head(iris$Sepal.Length)
## [1] 5.1 4.9 4.7 4.6 5.0 5.4
iris[ 1:5 , c("Sepal.Length","Sepal.Width") ]
## Sepal.Length Sepal.Width
## 1 5.1 3.5
## 2 4.9 3.0
## 3 4.7 3.2
## 4 4.6 3.1
## 5 5.0 3.6
head(iris$Species=='setosa')
## [1] TRUE TRUE TRUE TRUE TRUE TRUE
head(iris[ iris$Species=='setosa' , ])
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
head(iris[ iris$Species=='setosa' & iris$Sepal.Length >= 5, ])
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## 8 5.0 3.4 1.5 0.2 setosa
## 11 5.4 3.7 1.5 0.2 setosa
## 15 5.8 4.0 1.2 0.2 setosa
head(sort(iris$Sepal.Length))
## [1] 4.3 4.4 4.4 4.4 4.5 4.6
?sort
head(sort(iris$Sepal.Length, decreasing = TRUE))
## [1] 7.9 7.7 7.7 7.7 7.7 7.6
a <- c(2,1,5,3,4)
sort(a)
## [1] 1 2 3 4 5
order(a)
## [1] 2 1 4 5 3
head(iris[order(iris$Sepal.Length, decreasing = TRUE), c('Sepal.Length', 'Species') ])
## Sepal.Length Species
## 132 7.9 virginica
## 118 7.7 virginica
## 119 7.7 virginica
## 123 7.7 virginica
## 136 7.7 virginica
## 106 7.6 virginica
table(iris$Species)
##
## setosa versicolor virginica
## 50 50 50
pie(table(iris$Species))
barplot(table(iris$Species))
hist(iris$Sepal.Length)
boxplot(iris$Sepal.Length)
boxplot(Petal.Width ~ Species, data=iris)
plot(iris$Petal.Length, iris$Petal.Width, col=iris$Species)
## 資料探索
#download.file('https://raw.githubusercontent.com/ywchiu/cathayr/master/data/lvr_prices.csv', 'lvr_prices.csv')
getwd()
## [1] "D:/OS DATA/Desktop"
library(readr)
lvr_prices <- read_csv("D:/OS DATA/Desktop/lvr_prices.csv")
## Warning: Missing column names filled in: 'X1' [1]
## Parsed with column specification:
## cols(
## .default = col_character(),
## X1 = col_integer(),
## land_sqmeter = col_double(),
## trading_ymd = col_date(format = ""),
## finish_ymd = col_date(format = ""),
## building_sqmeter = col_double(),
## room = col_integer(),
## living_room = col_integer(),
## bath = col_integer(),
## total_price = col_integer(),
## price_per_sqmeter = col_double(),
## parking_sqmeter = col_double(),
## parking_price = col_integer()
## )
## See spec(...) for full column specifications.
## Warning in rbind(names(probs), probs_f): number of columns of result is not
## a multiple of vector length (arg 1)
## Warning: 5 parsing failures.
## row # A tibble: 5 x 5 col row col expected actual expected <int> <chr> <chr> <chr> actual 1 1282 total_price an integer 6700000000 file 2 2243 total_price an integer 3882685600 row 3 2244 total_price an integer 3373314400 col 4 4629 total_price an integer 3050000000 expected 5 5695 <NA> 29 columns 2 columns actual # ... with 1 more variables: file <chr>
View(lvr_prices)
daan <- lvr_prices[lvr_prices$area =='大安區' , ]
daan_total <- daan[(daan$trading_target == '房地(土地+建物)') & (daan$city_land_type == '住'), 'total_price']
summary(daan_total)
## total_price
## Min. : 2200000
## 1st Qu.: 13180000
## Median : 21740000
## Mean : 24473338
## 3rd Qu.: 29450000
## Max. :156300000
## NA's :1
daan_price_per_sqmeter <- daan[(daan$trading_target == '房地(土地+建物)') & (daan$city_land_type == '住'), 'price_per_sqmeter']
summary(daan_price_per_sqmeter)
## price_per_sqmeter
## Min. : 38010
## 1st Qu.:200038
## Median :240063
## Mean :241945
## 3rd Qu.:273166
## Max. :699830
## NA's :1
241945 /0.3025
## [1] 799818.2
sum(as.numeric(daan$total_price), na.rm = TRUE)
## [1] 13985391301
mean(as.numeric(daan$total_price), na.rm = TRUE)
## [1] 27315217
median(as.numeric(daan$total_price), na.rm = TRUE)
## [1] 18500000
zhongshan <- lvr_prices[lvr_prices$area == '中山區', c('address', 'total_price')]
res <- zhongshan[order(zhongshan$total_price, decreasing = TRUE), ]
res[1:3, ]
## # A tibble: 3 x 2
## address total_price
## <chr> <int>
## 1 臺北市中山區南京東路三段61~90號 188888888
## 2 正義段一小段211~240地號 180720000
## 3 臺北市中山區建國北路一段151~180號 180000000
head(res)
## # A tibble: 6 x 2
## address total_price
## <chr> <int>
## 1 臺北市中山區南京東路三段61~90號 188888888
## 2 正義段一小段211~240地號 180720000
## 3 臺北市中山區建國北路一段151~180號 180000000
## 4 臺北市中山區民權東路三段61~90號 170000000
## 5 臺北市中山區吉林路1~30號 157280000
## 6 臺北市中山區成功里樂群二路30巷61~90號 152600000
tail(res)
## # A tibble: 6 x 2
## address total_price
## <chr> <int>
## 1 德惠段三小段151~180地號 218000
## 2 北安段三小段31~60地號 200000
## 3 榮星段二小段271~300地號 100000
## 4 正義段四小段151~180地號 70000
## 5 吉林段三小段1021~1050地號 30000
## 6 臺北市中山區建國北路二段121~150號 NA
getTopThree <- function(area){
zhongshan <- lvr_prices[lvr_prices$area == area, c('address', 'total_price')]
res <- zhongshan[order(zhongshan$total_price, decreasing = TRUE), ]
return(res[1:3, ])
}
getTopThree('大安區')
## # A tibble: 3 x 2
## address total_price
## <chr> <int>
## 1 學府段三小段31~60地號 966660000
## 2 臺北市大安區忠孝東路四段271~300號 360270000
## 3 臺北市大安區敦化南路二段31~60號 321880000
getTopThree('萬華區')
## # A tibble: 3 x 2
## address total_price
## <chr> <int>
## 1 福星段四小段151~180地號 307000000
## 2 臺北市萬華區漢口街二段31~60號 172200000
## 3 臺北市萬華區成都路31~60號 170000000
house_mean <- tapply(lvr_prices$total_price, lvr_prices$area, function(e) mean(e, na.rm=TRUE))
sort(house_mean, decreasing = TRUE)
## 中正區 信義區 內湖區 大安區 大同區 中山區 北投區 松山區
## 28836445 28573246 27530523 27315217 20104882 20026617 19579429 19534135
## 南港區 士林區 文山區 萬華區
## 19107307 18453654 14809385 13710726
price_per_sec <- tapply(lvr_prices$total_price, lvr_prices$area, function(e) mean(e, na.rm=TRUE))
price_per_sec <- price_per_sec[! is.na(price_per_sec)]
barplot(sort(price_per_sec, decreasing = TRUE), main= "各區平均價", xlab = "區域", ylab = "價格", col="blue")
a <- c(1,2,3,4,5,6,700)
median(a)
## [1] 4
quantile(a, 0.25)
## 25%
## 2.5
quantile(a, 0.75)
## 75%
## 5.5
boxplot(a)
a <- c(1,2,3,4,5,6,7)
median(a)
## [1] 4
quantile(a, 0.25)
## 25%
## 2.5
quantile(a, 0.75)
## 75%
## 5.5
IQR(a)
## [1] 3
boxplot(a)
mean(a)
## [1] 4
boxplot(log(total_price) ~ area, data = lvr_prices, main= "房價箱型圖", xlab = "區域", ylab = "價格(log)")
#install.packages('dplyr')
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
help(package = "dplyr")
# R Style filter
head(lvr_prices[lvr_prices$area == '中山區' , ])
## # A tibble: 6 x 29
## X1 area trading_target address
## <int> <chr> <chr> <chr>
## 1 13 中山區 房地(土地+建物) 臺北市中山區合江街31~60號
## 2 14 中山區 房地(土地+建物) 臺北市中山區中山北路二段183巷1~30號
## 3 16 中山區 房地(土地+建物) 臺北市中山區吉林路361~390號
## 4 17 中山區 土地 長安段三小段271~300地號
## 5 24 中山區 房地(土地+建物) 臺北市中山區林森北路485巷1~30號
## 6 39 中山區 房地(土地+建物) 臺北市中山區建國北路三段93巷5弄1~30號
## # ... with 25 more variables: land_sqmeter <dbl>, city_land_type <chr>,
## # non_city_land_type <chr>, non_city_code <chr>, trading_ymd <date>,
## # trading_num <chr>, floor <chr>, total_floor <chr>,
## # building_type <chr>, main_purpose <chr>, built_with <chr>,
## # finish_ymd <date>, building_sqmeter <dbl>, room <int>,
## # living_room <int>, bath <int>, compartment <chr>, management <chr>,
## # total_price <int>, price_per_sqmeter <dbl>, parking_type <chr>,
## # parking_sqmeter <dbl>, parking_price <int>, comments <chr>,
## # numbers <chr>
# dplyr Style filter
head(filter(lvr_prices, area == '中山區'))
## # A tibble: 6 x 29
## X1 area trading_target address
## <int> <chr> <chr> <chr>
## 1 13 中山區 房地(土地+建物) 臺北市中山區合江街31~60號
## 2 14 中山區 房地(土地+建物) 臺北市中山區中山北路二段183巷1~30號
## 3 16 中山區 房地(土地+建物) 臺北市中山區吉林路361~390號
## 4 17 中山區 土地 長安段三小段271~300地號
## 5 24 中山區 房地(土地+建物) 臺北市中山區林森北路485巷1~30號
## 6 39 中山區 房地(土地+建物) 臺北市中山區建國北路三段93巷5弄1~30號
## # ... with 25 more variables: land_sqmeter <dbl>, city_land_type <chr>,
## # non_city_land_type <chr>, non_city_code <chr>, trading_ymd <date>,
## # trading_num <chr>, floor <chr>, total_floor <chr>,
## # building_type <chr>, main_purpose <chr>, built_with <chr>,
## # finish_ymd <date>, building_sqmeter <dbl>, room <int>,
## # living_room <int>, bath <int>, compartment <chr>, management <chr>,
## # total_price <int>, price_per_sqmeter <dbl>, parking_type <chr>,
## # parking_sqmeter <dbl>, parking_price <int>, comments <chr>,
## # numbers <chr>
# R Style Select
head(lvr_prices[ , 'total_price' ])
## # A tibble: 6 x 1
## total_price
## <int>
## 1 18680000
## 2 20300000
## 3 132096
## 4 4200000
## 5 14000000
## 6 255000
# dplyr Style Select
head(select(lvr_prices, total_price))
## # A tibble: 6 x 1
## total_price
## <int>
## 1 18680000
## 2 20300000
## 3 132096
## 4 4200000
## 5 14000000
## 6 255000
# R Style
sum(tail(head(iris), 3)[ , 'Sepal.Length'])
## [1] 15
# Magrittr
iris %>% head() %>% tail(3) %>% .[, 'Sepal.Length'] %>% sum()
## [1] 15
# magrittr + dplyr
lvr_prices %>% filter(area == '中山區') %>% select(total_price) %>% head()
## # A tibble: 6 x 1
## total_price
## <int>
## 1 5960000
## 2 20200000
## 3 4050000
## 4 1900000
## 5 14800000
## 6 10200000
lvr_prices %>% filter(area == '中山區') %>% select(address, total_price) %>% arrange(total_price) %>% head()
## # A tibble: 6 x 2
## address total_price
## <chr> <int>
## 1 吉林段三小段1021~1050地號 30000
## 2 正義段四小段151~180地號 70000
## 3 榮星段二小段271~300地號 100000
## 4 北安段三小段31~60地號 200000
## 5 德惠段三小段151~180地號 218000
## 6 德惠段三小段151~180地號 267716
lvr_prices %>% filter(area == '中山區') %>% select(address, total_price) %>% arrange(desc(total_price)) %>% head()
## # A tibble: 6 x 2
## address total_price
## <chr> <int>
## 1 臺北市中山區南京東路三段61~90號 188888888
## 2 正義段一小段211~240地號 180720000
## 3 臺北市中山區建國北路一段151~180號 180000000
## 4 臺北市中山區民權東路三段61~90號 170000000
## 5 臺北市中山區吉林路1~30號 157280000
## 6 臺北市中山區成功里樂群二路30巷61~90號 152600000
lvr_prices$trading_ym <- as.Date(format(lvr_prices$trading_ymd, '%Y-%m-01'))
#lvr_prices$trading_ym
## SQL
## ========================================
## SELECT trading_ym, area, SUM(total_price)
## FROM lvr_prices
## GROUP BY trading_ym, area
lvr_stat <- lvr_prices %>%
select(trading_ym, area, total_price) %>%
group_by(trading_ym, area) %>%
summarise(overall_price = sum(as.numeric(total_price), na.rm=TRUE))
lvr_stat2 <- lvr_stat[lvr_stat$area== '北投區', ]
plot(lvr_stat2$trading_ym, lvr_stat2$total_price, type = 'line')
## Warning: Unknown or uninitialised column: 'total_price'.
## Warning in plot.xy(xy, type, ...): 繪圖類型 'line' 被截短成第一個字元
lvr_stat <- lvr_prices %>%
select(trading_ym, area, total_price) %>%
filter(trading_ym >= '2012-01-01') %>%
group_by(trading_ym, area) %>%
summarise(overall_price = sum(as.numeric(total_price), na.rm=TRUE))
lvr_stat$area <- as.factor(lvr_stat$area)
par(mfrow=c(3,4))
for (a in levels(lvr_stat$area)){
plot(overall_price ~ trading_ym
,lvr_stat[lvr_stat$area == a,]
, type='o
', main = a)
}
## Warning in plot.xy(xy, type, ...): 繪圖類型 'o
## ' 被截短成第一個字元
## Warning in plot.xy(xy, type, ...): 繪圖類型 'o
## ' 被截短成第一個字元
## Warning in plot.xy(xy, type, ...): 繪圖類型 'o
## ' 被截短成第一個字元
## Warning in plot.xy(xy, type, ...): 繪圖類型 'o
## ' 被截短成第一個字元
## Warning in plot.xy(xy, type, ...): 繪圖類型 'o
## ' 被截短成第一個字元
## Warning in plot.xy(xy, type, ...): 繪圖類型 'o
## ' 被截短成第一個字元
## Warning in plot.xy(xy, type, ...): 繪圖類型 'o
## ' 被截短成第一個字元
## Warning in plot.xy(xy, type, ...): 繪圖類型 'o
## ' 被截短成第一個字元
## Warning in plot.xy(xy, type, ...): 繪圖類型 'o
## ' 被截短成第一個字元
## Warning in plot.xy(xy, type, ...): 繪圖類型 'o
## ' 被截短成第一個字元
## Warning in plot.xy(xy, type, ...): 繪圖類型 'o
## ' 被截短成第一個字元
## Warning in plot.xy(xy, type, ...): 繪圖類型 'o
## ' 被截短成第一個字元
# install.packages('tidyr')
library(tidyr)
price_pivot <- spread(lvr_stat, trading_ym, overall_price, fill=0)
View(price_pivot)
write.csv(price_pivot, 'taipei_house_price.csv')
library(reshape2)
##
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
##
## smiths
?melt
melt(price_pivot)
## Using area as id variables
## area variable value
## 1 士林區 2012-01-01 0
## 2 大同區 2012-01-01 0
## 3 大安區 2012-01-01 0
## 4 中山區 2012-01-01 0
## 5 中正區 2012-01-01 39380000
## 6 內湖區 2012-01-01 191520000
## 7 文山區 2012-01-01 0
## 8 北投區 2012-01-01 0
## 9 松山區 2012-01-01 0
## 10 信義區 2012-01-01 40800000
## 11 南港區 2012-01-01 0
## 12 萬華區 2012-01-01 0
## 13 士林區 2012-02-01 21500000
## 14 大同區 2012-02-01 0
## 15 大安區 2012-02-01 0
## 16 中山區 2012-02-01 140250000
## 17 中正區 2012-02-01 0
## 18 內湖區 2012-02-01 0
## 19 文山區 2012-02-01 0
## 20 北投區 2012-02-01 0
## 21 松山區 2012-02-01 0
## 22 信義區 2012-02-01 0
## 23 南港區 2012-02-01 12300000
## 24 萬華區 2012-02-01 0
## 25 士林區 2012-03-01 0
## 26 大同區 2012-03-01 0
## 27 大安區 2012-03-01 0
## 28 中山區 2012-03-01 0
## 29 中正區 2012-03-01 40230000
## 30 內湖區 2012-03-01 0
## 31 文山區 2012-03-01 38620000
## 32 北投區 2012-03-01 64310000
## 33 松山區 2012-03-01 22800000
## 34 信義區 2012-03-01 0
## 35 南港區 2012-03-01 56600000
## 36 萬華區 2012-03-01 0
## 37 士林區 2012-04-01 579520
## 38 大同區 2012-04-01 8150000
## 39 大安區 2012-04-01 4886080
## 40 中山區 2012-04-01 191490000
## 41 中正區 2012-04-01 191730000
## 42 內湖區 2012-04-01 41030000
## 43 文山區 2012-04-01 113200000
## 44 北投區 2012-04-01 43970000
## 45 松山區 2012-04-01 0
## 46 信義區 2012-04-01 107610000
## 47 南港區 2012-04-01 0
## 48 萬華區 2012-04-01 4838500
## 49 士林區 2012-05-01 101420528
## 50 大同區 2012-05-01 0
## 51 大安區 2012-05-01 49052000
## 52 中山區 2012-05-01 35480000
## 53 中正區 2012-05-01 98930000
## 54 內湖區 2012-05-01 8800000
## 55 文山區 2012-05-01 10500000
## 56 北投區 2012-05-01 219868610
## 57 松山區 2012-05-01 46500000
## 58 信義區 2012-05-01 138070000
## 59 南港區 2012-05-01 0
## 60 萬華區 2012-05-01 0
## 61 士林區 2012-06-01 279545000
## 62 大同區 2012-06-01 91160800
## 63 大安區 2012-06-01 354136500
## 64 中山區 2012-06-01 267420000
## 65 中正區 2012-06-01 120000000
## 66 內湖區 2012-06-01 443459000
## 67 文山區 2012-06-01 229331800
## 68 北投區 2012-06-01 86900000
## 69 松山區 2012-06-01 270720000
## 70 信義區 2012-06-01 259820000
## 71 南港區 2012-06-01 149576914
## 72 萬華區 2012-06-01 47610000
## 73 士林區 2012-07-01 1325998130
## 74 大同區 2012-07-01 302473961
## 75 大安區 2012-07-01 2846892056
## 76 中山區 2012-07-01 2393478800
## 77 中正區 2012-07-01 1001514513
## 78 內湖區 2012-07-01 2210944966
## 79 文山區 2012-07-01 1208333372
## 80 北投區 2012-07-01 1992462984
## 81 松山區 2012-07-01 957017195
## 82 信義區 2012-07-01 2349217000
## 83 南港區 2012-07-01 1264313316
## 84 萬華區 2012-07-01 748839421
## 85 士林區 2012-08-01 2171758033
## 86 大同區 2012-08-01 2011512625
## 87 大安區 2012-08-01 4529857352
## 88 中山區 2012-08-01 4297669667
## 89 中正區 2012-08-01 4153153873
## 90 內湖區 2012-08-01 4803000969
## 91 文山區 2012-08-01 2561088358
## 92 北投區 2012-08-01 4314574989
## 93 松山區 2012-08-01 2186172414
## 94 信義區 2012-08-01 2525115998
## 95 南港區 2012-08-01 2314709691
## 96 萬華區 2012-08-01 1547935331
## 97 士林區 2012-09-01 2188610141
## 98 大同區 2012-09-01 957572920
## 99 大安區 2012-09-01 3914666964
## 100 中山區 2012-09-01 5597370292
## 101 中正區 2012-09-01 3220295172
## 102 內湖區 2012-09-01 5839368328
## 103 文山區 2012-09-01 1894795550
## 104 北投區 2012-09-01 3081013230
## 105 松山區 2012-09-01 1559866125
## 106 信義區 2012-09-01 4010489522
## 107 南港區 2012-09-01 3792856731
## 108 萬華區 2012-09-01 1198024054
## 109 士林區 2012-10-01 781134315
## 110 大同區 2012-10-01 1886308672
## 111 大安區 2012-10-01 2226942094
## 112 中山區 2012-10-01 2643790879
## 113 中正區 2012-10-01 741582125
## 114 內湖區 2012-10-01 1568754833
## 115 文山區 2012-10-01 1493564050
## 116 北投區 2012-10-01 884927511
## 117 松山區 2012-10-01 875767218
## 118 信義區 2012-10-01 1520031963
## 119 南港區 2012-10-01 1250733669
## 120 萬華區 2012-10-01 657943625
## 121 士林區 2012-11-01 0
## 122 大同區 2012-11-01 0
## 123 大安區 2012-11-01 1630329
## 124 中山區 2012-11-01 0
## 125 中正區 2012-11-01 0
## 126 內湖區 2012-11-01 0
## 127 文山區 2012-11-01 0
## 128 北投區 2012-11-01 11300000
## 129 松山區 2012-11-01 0
## 130 信義區 2012-11-01 0
## 131 南港區 2012-11-01 0
## 132 萬華區 2012-11-01 0
dfall <- data.frame()
for(a in list.files('test/')){
fname <- paste0('test/', a)
df <- read.csv(fname)
dfall <- rbind(dfall, df)
}
str(dfall)
for (a in levels(lvr_stat$area))
#download.file('https://raw.githubusercontent.com/ywchiu/cathayr/master/data/Training50.csv', 'Training50.csv')
trainset <- read.csv('Training50.csv')
View(trainset)
names(trainset)
## [1] "X"
## [2] "Creditability"
## [3] "Account.Balance"
## [4] "Duration.of.Credit..month."
## [5] "Payment.Status.of.Previous.Credit"
## [6] "Purpose"
## [7] "Credit.Amount"
## [8] "Value.Savings.Stocks"
## [9] "Length.of.current.employment"
## [10] "Instalment.per.cent"
## [11] "Sex...Marital.Status"
## [12] "Guarantors"
## [13] "Duration.in.Current.address"
## [14] "Most.valuable.available.asset"
## [15] "Age..years."
## [16] "Concurrent.Credits"
## [17] "Type.of.apartment"
## [18] "No.of.Credits.at.this.Bank"
## [19] "Occupation"
## [20] "No.of.dependents"
## [21] "Telephone"
## [22] "Foreign.Worker"
trainset$X <- NULL
View(trainset)
#install.packages("rpart")
library(rpart)
trainset$Creditability = as.factor(trainset$Creditability)
model <- rpart(Creditability ~ ., data=trainset, method = 'class' )
plot(model, margin = 0.1)
text(model)
#download.file('https://raw.githubusercontent.com/ywchiu/cathayr/master/data/Test50.csv', 'Test50.csv')
testset <- read.csv('Test50.csv')
testset$X <- NULL
testset$Creditability = as.factor(testset$Creditability)
predicted <- predict(model, testset, type = "class")
predicted
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1
## 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
## 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0
## 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
## 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1
## 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
## 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
## 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
## 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1
## 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
## 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1
## 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
## 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
## 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1
## 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
## 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1
## 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
## 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1
## 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
## 1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1
## 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
## 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1
## 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
## 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
## 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
## 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
## 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
## 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0
## 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
## 1 0 1 0 0 1 1 1 1 0 0 1 0 1 1 1 1 1
## 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
## 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1
## 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
## 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1
## 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
## 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1
## 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
## 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1
## 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
## 0 0 0 0 1 1 1 0 1 1 0 0 1 0 1 1 0 1
## 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
## 1 1 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1
## 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
## 1 1 1 0 0 0 1 0 1 0 0 1 0 1 1 1 1 0
## 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
## 1 0 1 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0
## 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
## 1 0 1 1 1 0 0 0 0 1 0 0 0 1 0 1 1 1
## 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
## 1 1 1 1 0 1 1 0 1 1 0 0 0 0 0 1 0 1
## 487 488 489 490 491 492 493 494 495 496 497 498 499 500
## 1 1 1 1 1 0 0 0 0 0 0 1 1 1
## Levels: 0 1
sum(predicted == testset$Creditability) / length(testset$Creditability)
## [1] 0.71
table(predicted, testset$Creditability)
##
## predicted 0 1
## 0 64 52
## 1 93 291
head(predict(model, testset, type = 'class'))
## 1 2 3 4 5 6
## 1 1 0 1 1 1
## Levels: 0 1
# install.packages('caret')
#library(caret)
res <- as.factor(ifelse(predict(model, testset)[,1] >= 0.2, 0, 1))
tb <- table(testset$Creditability, res)
x <- tb[3] / (tb[4] + tb[3])
y <- tb[1] / (tb[1] + tb[2])
prediction <- predict(model, testset, type = "prob")
roc_x <- c(0)
roc_y <- c(0)
for(i in seq(0,1,0.01)){
res <- as.factor(ifelse(prediction[,1] >= i, 0, 1))
tb <- table(testset$Creditability, res)
if (ncol(tb) == 2){
x <- tb[3] / (tb[4] + tb[3])
y <- tb[1] / (tb[1] + tb[2])
roc_x <- c(roc_x, x)
roc_y <- c(roc_y, y)
}
}
roc_x <- c(roc_x, 1)
roc_y <- c(roc_y, 1)
plot(roc_x, roc_y, type='b')
#install.packages('ROCR')
library(ROCR)
## Loading required package: gplots
##
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
##
## lowess
predictions <- predict(model, testset, type="prob")
pred.to.roc <- predictions[, 2]
pred.rocr <- prediction(pred.to.roc, as.factor(testset$Creditability))
perf.rocr <- performance(pred.rocr, measure = "auc", x.measure = "cutoff")
perf.tpr.rocr <- performance(pred.rocr, "tpr","fpr")
plot(perf.tpr.rocr, colorize=T,main=paste("AUC:",(perf.rocr@y.values)))
#install.packages('randomForest')
library(randomForest)
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:dplyr':
##
## combine
forest <- randomForest(Creditability ~., data = trainset, ntree=200, importance=T, proximity=T)
forest.predicted <- predict(forest, testset, type = "class")
table(forest.predicted, testset$Creditability)
##
## forest.predicted 0 1
## 0 50 28
## 1 107 315
sum(forest.predicted == testset$Creditability) / length(testset$Creditability)
## [1] 0.73
predictions1 <- predict(model, testset, type="prob")
pred.to.roc1 <- predictions1[, 2]
pred.rocr1 <- prediction(pred.to.roc1, as.factor(testset$Creditability))
perf.rocr1 <- performance(pred.rocr1, measure = "auc", x.measure = "cutoff")
perf.tpr.rocr1 <- performance(pred.rocr1, "tpr","fpr")
predictions2 <- predict(forest, testset, type="prob")
pred.to.roc2 <- predictions2[, 2]
pred.rocr2 <- prediction(pred.to.roc2, as.factor(testset$Creditability))
perf.rocr2 <- performance(pred.rocr2, measure = "auc", x.measure = "cutoff")
perf.tpr.rocr2 <- performance(pred.rocr2, "tpr","fpr")
plot(perf.tpr.rocr1,main='ROC Curve', col=1)
legend(0.7, 0.2, c('rpart', 'randomforest'), 1:2)
plot(perf.tpr.rocr2, col=2, add=TRUE)
#download.file('https://raw.githubusercontent.com/ywchiu/cathayr/master/data/customers.csv', 'customers.csv')
customers <- read.csv('customers.csv')
head(customers)
## CustomerID Genre Age Annual_Income Spending_Score
## 1 1 Male 19 15 39
## 2 2 Male 21 15 81
## 3 3 Female 20 16 6
## 4 4 Female 23 16 77
## 5 5 Female 31 17 40
## 6 6 Female 22 17 76
customers <- customers[, c('Annual_Income', 'Spending_Score')]
head(customers)
## Annual_Income Spending_Score
## 1 15 39
## 2 15 81
## 3 16 6
## 4 16 77
## 5 17 40
## 6 17 76
set.seed(123)
kc <- kmeans(customers, centers = 5)
kc
## K-means clustering with 5 clusters of sizes 50, 27, 74, 39, 10
##
## Cluster means:
## Annual_Income Spending_Score
## 1 27.40000 49.48000
## 2 79.00000 16.59259
## 3 55.90541 49.93243
## 4 86.53846 82.12821
## 5 109.70000 22.00000
##
## Clustering vector:
## [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [71] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [106] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4
## [141] 2 4 3 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2
## [176] 4 2 4 2 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4
##
## Within cluster sum of squares by cluster:
## [1] 48174.480 4062.519 7375.000 13444.051 2458.100
## (between_SS / total_SS = 72.0 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss"
## [5] "tot.withinss" "betweenss" "size" "iter"
## [9] "ifault"
plot(customers$Annual_Income, customers$Spending_Score, col=kc$cluster)
points(kc$centers[,1], kc$centers[,2], col='yellow')
library(cluster)
kcs = silhouette(kc$cluster,dist(customers))
summary(kcs)
## Silhouette of 200 units in 5 clusters from silhouette.default(x = kc$cluster, dist = dist(customers)) :
## Cluster sizes and average silhouette widths:
## 50 27 74 39 10
## 0.04103987 0.47253618 0.63162169 0.48851396 0.35704613
## Individual silhouette widths:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.4401 0.2089 0.5292 0.4209 0.6421 0.7556
plot(kcs)
library(fpc)
nk <- 2:10
set.seed(123)
SW <- sapply(nk, function(k) {
cluster.stats(dist(customers), kmeans(customers, centers=k)$cluster)$avg.silwidth
})
plot(nk, SW, type="l", xlab="number of clusers", ylab="average silhouette width")