1a create an example of untidy data in excel from local compute and print
library(readxl)
pap44 <- read_excel("~/wfed540/pap44.xlsx",2)
pap44
## # A tibble: 13 x 4
## X__1 X__2 `untidy data` X__3
## <chr> <chr> <chr> <chr>
## 1 country year key values
## 2 ghana 2015 homocide 200
## 3 ghana 2015 population 27000000
## 4 ghana 2016 homocide 100
## 5 ghana 2016 population 25000000
## 6 nigeria 2015 homocide 150
## 7 nigeria 2015 population 165000000
## 8 nigeria 2016 homocide 120
## 9 nigeria 2016 population 160000000
## 10 gambia 2015 homocide 60
## 11 gambia 2015 population 4000000
## 12 gambia 2016 homocide 90
## 13 gambia 2016 population 4000000
1b create an example of a tidy dataset in excel from local compute and print
library(readxl)
pap44 <- read_excel("~/wfed540/pap44.xlsx")
pap44
## # A tibble: 7 x 4
## X__1 X__2 `tidy data` X__3
## <chr> <chr> <chr> <chr>
## 1 country year homocide population
## 2 ghana 2015 200 27000000
## 3 ghana 2016 100 25000000
## 4 nigeria 2015 150 165000000
## 5 nigeria 2016 120 160000000
## 6 gambia 2015 60 4000000
## 7 gambia 2016 90 4000000
2 collect 10 observations two variables(departments and number of cars used) and print
library(readxl)
depcars<-read_excel("~/wfed540/depcars.xlsx")
depcars
## # A tibble: 10 x 2
## department cars
## <chr> <dbl>
## 1 park 4
## 2 police 6
## 3 hospital 9
## 4 school 7
## 5 stadium 3
## 6 daycare 6
## 7 prison 4
## 8 cariage 2
## 9 water 2
## 10 electric 6
2 collect 10 observations two variables (companys and profits)and print
library(readxl)
pap44 <- read_excel("~/wfed540/pap44.xlsx",3)
pap44
## # A tibble: 10 x 2
## company profit
## <chr> <dbl>
## 1 apple 2.0e+07
## 2 dell 3.0e+07
## 3 toyota 5.0e+08
## 4 mercedex 5.5e+08
## 5 nissan 6.5e+08
## 6 google 2.5e+08
## 7 cartapilar 6.9e+08
## 8 komatsu 9.9e+08
## 9 walmat 3.5e+08
## 10 target 2.5e+08
2 collect 10 observations two variables(animals and temperature) and print
library(readxl)
pap44 <- read_excel("~/wfed540/pap44.xlsx",4)
pap44
## # A tibble: 10 x 2
## kind temperature
## <chr> <dbl>
## 1 cow 91
## 2 dog 90
## 3 antelop 93
## 4 chempanzee 98
## 5 goat 88
## 6 sheep 82
## 7 fowl 87
## 8 fish 86
## 9 elephant 81
## 10 deer 88
2c narative of how the data were collected
the fisrt dataset was collected from a government agency to determine the number of cars used by city's departments. this assist the agency to determine maintenance and fuel cost.
the second the dataset was collected from the walstreet journal about the profit declared by the select companies listed on the stock exchange.
the third dataset was collected by vertinary a graduate reseacher who was testing the temperature of animals at a different regions of the world.
2d definition of the variables
the variables are departments and numbersof cars used.
the departments are nominal, whiles the number of cars are ratio. its ratio because it gives the exact of car
the variables used in the second observation are companies and profits. the companies are nominal and the profits are ratios.
the variables used in the third observation are animals and temperature.
the animals are nominal and the temperatures are interval scale measurement.