counting
How would you count all this fruit?
By total weight, cost or sale value
counting
no
The square of the counting basis determines the maximum count possible: \(5^2= 25; 10^2 = 100; 12^2= 144\)
tally
1 item is represented with 1 tick which are grouped in units of 5
add or erase tick mark, respectively
hard to conceptualize and represent multiplication
Add or erase a tick mark, respectively
Roman Numerial | Working | Decimal |
---|---|---|
MCMXLVII | 1000 + 900 + 40 + 5 + 2 | 1947 |
DCCCLXXX | 500 + 300 + 50 + 30 | 880 |
MMCMXCIX | 2000 + 900 + 90 + 9 | 2999 |
Roman symbol | Decimal equivalent |
---|---|
I | 1 |
V | 5 |
X | 10 |
L | 50 |
C | 100 |
D | 500 |
M | 1000 |
\(\bar V\) | 5000 |
\(\bar X\) | 10,000 |
\(\bar L\) | 50,000 |
\(\bar C\) | 100,000 |
\(\bar D\) | 500,000 |
\(\bar M\) | 1,000,000 |
\[\bar M\bar M\bar M\bar M\bar D\bar M\bar X\bar CM\bar XCMXCIX (4,999,999)\]
How do you add and substract in this system?
Carries and borrows require a change of symbol
\[\begin{array}{rcl} 39 + 27 & = & XXXIX + XXVII\cr &= & xxx\ v\ iiii + xx\ v\ ii\cr &= & xxxxx\ vv\ iiiiii\cr 66 &= & L X V I\cr & & \cr 52 - 29 & = & LII - XXIX \cr &=& xxxxx\ ii - xx\ v\ iiii\cr &=& xxxx\ vv\ ii - xx\ v\ iiii\cr &=& xxxx\ v\ iiiiiii - xx\ v\ iiii\cr 33 &=& XXIII\cr \end{array}\]
2 x 100 ------- 200
| 4 x 10 ---- 40
| | 3 x 1 - 3
| | |
2 4 3 243
Introduces a concept of digits that can be used to represent every power of 10
Represent zero or a null place holder
What do Arabic numerals actually look like?
Arabic numbers
1 0 1
9 3
========
1 9 4
2 3
5 7 4 1
============
5 7 6 4
3 5
1 7
======
4 12 Sum over loads the 1st column
4+1 2 Shift the value of ten to the left column
5 2 Final Answer
7 8 3
2 9 8
=========
1 1
1 7
9
========
1 0 8 1
1 x 32 -------------- 32
| 0 x 16 ------------ 0
| | 1 x 8 ---------- 8
| | | 1 x 4 ------- 4
| | | | 0 x 2 ---- 0
| | | | | 1 x 1 - 1
| | | | | |
1 0 1 1 0 1 45
Determine the decimal equivalents.
\(10111 + 101 = 23 + 5 = 28\)
Figure out the binary sums of these binary numbers
1010 Rearrange in right justified format
+111
====
1121 (not allowed, need to -2 and carry the one)
1201 (not allowed, need to -2 and carry the one)
2001 (not allowed, need to -2 and carry the one)
10001 Final answer!!! (16+1 = 17)
10111
+ 101
=====
10212 (not allowed, need to -2 and carry the one)
11020 (not allowed, need to -2 and carry the one)
11100 Final answer!!! (16+8+4 = 28)
2 x 512 -------- 1024
| 7 x 64 ------ 448
| | 1 x 8 ---- 8
| | | 5 x 1 - 5
| | | |
2 7 1 5 1485
10 x 4096 ------- 40960
| 0 x 256 ------ 0
| | 14 x 16 --- 224
| | | 15 x 1 - 15
| | | |
A 0 E F 41199
1 A F
+ 2 F F
==============
3 25 30 <- Show column sums in decimal
3 25+1 14 <- Readjust by -16 and carry 1
3+1 10 14 <- Readjust by -16 and carry 1
4 10 14
4 A E <- convert to Hexadecimal digits
= 4AE
3 5
+ A 5
========
13 10 (No adjustment needed; <16)
D A (Replace by hexidecimal symbols )
= DA
Add the number as a standard column wise process starting with the rightmost column.
Convert to decimal and back convert to hexadecimal (usually slower)
\[\hbox{1AF}_{16} + \hbox{2FF}_{16} = 431_{10} + 767_{10} = 1198_{10}\] \[1198_{10} = \left(4 \times 256 + 10 \times 16 + 14 \times 1\right)_{10} = \hbox{4AE}_{16}\]
3. Many calculators can to calculate in other bases so set the base to 16 and add the numbers.
\[\left(\hbox{1AF} + \hbox{2FF} = \hbox{4AE}\right)_{16}\]
Decimal | Binary | Octal | Hexa- decimal |
---|---|---|---|
39 | 100101 | 45 | 25 |
42 | 101010 | 52 | 2A |
25 | 11001 | 31 | 19 |
26 | 11010 | 32 | 1A |
Old Kyat * 2pe = 0.05 kyat * 2pe = mu = 0.10 kyat * 2mu = mat = 0.20 kyat * 5 mat = 1 silver Kyat * 16 silver kyat = 1 gold kyat
New Kyat * 100 pe = 1 kyat * coins: 5,10,25,50 pyas
\[\begin{array}{l} \hbox{1 gold kyat, 2 silver kyat, 4 mat, 1mu}\\ \qquad = 16 \times 1 + 2\times 1 + 4 \times 0.20 + 1 \times 0.10\\ \qquad = 16 + 2 + 0.80 + 0.10 = 18.90\\ \end{array} \]
\[\begin{array}{rclc} 27.40 &=& 27.40 -16 = 11.40 & 1 \hbox{ gold kyat}\\ & & 11.40 - 11 = 0.40 & 11 \hbox{ silver kyat} \\ & & 0.40 - 2\times 0.20 = 0 & 2 \hbox{ mat}\\ \end{array}\]
Thai packaging: * 10 * 30 * 300 * 1200
America produces 93,162,174,216 eggs each year. If one day’s production is shipped to Thailand what would the size of the shipment be in both standards?
American:
\[\begin{array}{rll} 93162174216 & = {93162174216 \over 1200} & = 77635145\ pallet\\ 216 &= 216/30 & = 7\ trays\\ 6 & & = 6\ eggs\\ \end{array}\]
\[\begin{array}{rll} 93162174216 & = {93162174216 \over 1728} & = 53913295\ (12gross)\\ 456 &= {456 \over 144} & = 3\ gross\\ 24 & = {24 \over 2} & = 2\ dozen\\ \end{array}\]
Urdu Units | Decimal Equivalant | Scientific Notation |
---|---|---|
Hazar | 1,000 | \(\huge 10^3\) |
Lakh | 100,000 | \(\huge 10^5\) |
Crore | 10,000,000 | \(\huge 10^7\) |
Arab | 1,000,000,000 | \(\huge 10^9\) |
Kharab | 100,000,000,000 | \(\huge 10^{11}\) |
Country | Arabic units | Urdu units |
---|---|---|
China: | 1,388,336,022 | 1 Arab, 38 Crore, 83 Lakh, 36 Hazar, and 22 |
India: | 1,342,512,706 | 1 Arab, 34 Crore, 25 Lakh, 12 Hazar, and 706 |
World: | 7,524,885,124 | 7 Arab, 52 Crore, 48 Lakh, 85 Hazar, and 124 |
factors
\[\Large\begin{array}{cccccclcccccccl} \small\blacktriangle &\small\circ &[1] & = & 1 \times 1 & = & 1 & & & \small \bullet & [6] & = & 2 \times 3 \times 1 & = & 2 \times 3 \\ \small\blacktriangledown & \small\bullet & [2] & = & 2 \times 1 & = & 2 & & \small\blacktriangledown &\small\circ & [7] & = & 7 \times 1 & = & 7 \\ \small\blacktriangledown &\small\circ &[3] & = & 3 \times 1 & = & 3 & & & \small\bullet & [8] & = & 2 \times 2 \times 2 \times 1 & = & 2^3 \\ &\small\bullet &[4] & = & 2 \times 2 \times 1 & = & 2^2 & & & \small\circ & [9] & = & 3 \times 3 \times 1 & = & 3^2\\ \small\blacktriangledown &\small\circ &[5] & = & 5 \times 1 & = & 5 & & &\small\bullet & [10] & = & 2 \times 5 \times 1 & = & 2 \times 5 \\ \end{array}\]
\[\hbox{Key:}\ \ \ \ \blacktriangle\ \hbox{Identity}\ \ \ \ \blacktriangledown\ \hbox{Prime}\ \ \ \ \circ\ \hbox{Odd}\ \ \ \ \bullet\ \hbox{Even}\]
Not divisible by 2: Odd
Define the following:
Imaginary numbers: Numbers with a factor containing \(\sqrt{-1}\)
NumberLines
Number | round(x) | ceiling(x) | floor(x) |
---|---|---|---|
-3.99 | -4 | -3 | -4 |
-3.50 | -4 | -3 | -4 |
-3.30 | -3 | -3 | -4 |
-3.01 | -3 | -3 | -4 |
1.00 | 1 | 1 | 1 |
1.45 | 1 | 2 | 1 |
2.99 | 3 | 3 | 2 |
3.01 | 3 | 4 | 3 |
4.50 | 5 | 5 | 4 |
2D Representation
### 3D Space: with projects to 2D
coordinate
polar
PoundCake
Rose Diagram
6
Bar graph would work just fine.
How would you record these dimensions in a spreadsheet?
Each row represents a specific instance or case.