Unit 1. Order of Precedence
So what is the answer?
\[\large\begin{array}{rclr}
3 \times 4 - 2 \times 5 & = & (3\times 4)-(2\times 5) &(1)\\
(3 \times 4) - (2 \times 5) & = & 12 - 10 = 2 &(2)\\
\left((3 \times 4) - 2\right) \times 5 & = & (12 -2)\times 5 = 50 & (3)\\
3 \times (4 - 2) \times 5 & = & 3\times 2\times 5 = 30 & (4)\\
3 \times \left(4 - (2 \times 5)\right) & = & 3\times (4 - 10)= -18 & (5)\\
\end{array}\]
Challenge questions
\[\large\begin{array}{rclr}
10 - 2^2 + 3 &=& 10 - 4 + 3= 9 &(1)\\
& & \\
{3^2 \times 7 - 3 + 6 \over 4 + 2} &=& {(9\times 7)- 3 + 6\over 6} = 66 \div 6 = 11 & (2)\\
\end{array}\]
Unit 2: Exponents
Challenge questions
Simplify the following:
\[\begin{array}{rclr}
{1 \over \sqrt{x}} & = & {1\over x^{1\over 2}} = x^{-{1\over 2}} & (1)\\
{2^x \times 8^2 \over 16} & = & {2^x \times (2^3)^2 \over 2^4} = 2^x \times 2^6 \times 2^{-4} = 2^{(x+2)} & (2)\\
\end{array}\]
- The human heart beats about 70 times per min. Express in scientific notation, the number of times a heart would be expected to beat in 72 years.
\[\begin{array}{l}
{70\over min} \times {60 min\over hr} \times {24 hr\over day} \times {365 days\over yr} \times {72 yr} &\\
\qquad = 7\times 10^1 \times 6 \times 10^1 \times 2.4 \times 10^1 \times 3.65 \times 10^2 \times 7.2 \times 10^1 \\
\qquad = 7\times 6 \times 2.4 \times 3.65 \times 7.2 \times 10^{(1+1+1+2+1)} \\
\qquad = 26490 \times 10^{6} = 2.649 \times 10^4 \times 10^6 \\
\qquad = 2.649 \times 10^{10}\\
\end{array}\]
Unit 3: Fractions
\[\large\begin{array}{rclr}
2{2\over 3} \times {1\over 5} + 1{1\over 2} \div 2{1\over 2} & = & {8\over 3 \times 5} + {{3\over 2}\over {5\over 2}} = {8\over 15} + {9\over15} = {17 \over 15} & (1)\\
& & \\
{{\left({1\over 3} \right)^2}\times 4{1\over 2}\over 3} & = & {{1\over 9} \times {9\over 2}\over 3} = {2 \times {1\over 2}\over 2 \times 3} = {1\over 6} & (2)\\
\end{array}\]
Unit 4: Identity
## Problem of Identity
Give an example and determine the value of \(\large I\) for each relationship.
\[\large\begin{array}{rlrcrlr}
a \times I = a & I = 1 & (1) & & {a \over I} = a & I = 1 & (2)\\
a - I = a & I = 0 &(3) & & a + I = a & I = 0 &(4)\\
a^I = a & I = 1 &(5) & & a \times a^I = a & I=0 & (6)\\
\end{array}\]
Unit 5: Reciprocal
Determining the reciprocal
Identify the reciprocal for each relationship.
\[\large\begin{array}{rlcrl}
a \times I = 1 & I = {1\over a} & (1) & & {a \over I} = 1 & I = a & (2)\\
a - I = 0 & I = a & (3) & & a + I = 0 & I = -a & (4)\\
a \times a^I = 1 & I = -1 & (5) & & a \times a^I = a & I = 1 & (6)\\
\end{array}\]
Unit 6: Basic laws of Math
Producing a trail mix
Recipe
100 gm |
roasted almonds |
$4.00 |
100 gm |
roasted pecans |
$6.50 |
100 gm |
roasted cashews |
$4.75 |
100 gm |
sunflower seeds |
$0.40 |
100 gm |
pumpkins seeds |
$0.75 |
150 gm |
dried cherries |
$3.90 |
200 gm |
raisin |
$5.60 |
100 gm |
cranberries |
$6.90 |
200 gm |
chocolate chips |
$3.50 |
10 gm |
sea salt |
$0.35 |
5 gm |
cinnamon |
$8.00 |
5 gm |
grown nutmeg |
$9.50 |
1170 gm |
Totals |
- |
Challenge Questions
- What is the cost per kilo?
\[{19.30\over 1170} = 16.50 \qquad \qquad(1)\]
- If the market value is US$25.00 per 500 gm, what is the profit margin?
\[\hbox{Income:}\quad {25\over 500gm} = {50\over 1kg} \qquad\qquad (2)\] \[\hbox{Cost:}\quad 16.50\qquad\qquad\qquad\] \[\hbox{Profit:}\qquad 50.00 - 16.50 = 33.50 \] \[\hbox{Profit margin:}\quad {33.50 \over 50} = 67\%\]
Pound Cake
\[\large\begin{array}{lrr}
Ingredient & Amt/ kg & Cost/kg\\
Butter & 1 & 2.5 \\
Eggs & 1 & 3.6 \\
Flour & 1 & 1.5 \\
Milk & 1 & 3.8 \\
Sugar & 1 & 1.8 \\
\hfill Totals & 5 kg & 13.2 \\
\hfill Cost/kg & & {13.20 \over 5} = 2.64 \\
\end{array}\]
LS0tDQp0aXRsZTogJ0lUMTAwIFNlc3Npb24gMzogLSBNYXRoZW1hdGljYWwgb3BlcmF0aW9ucycNCmF1dGhvcjogJ0Fuc3dlciBrZXk6IFJvYmVydCBCYXR6aW5nZXInDQpvdXRwdXQ6DQogIGh0bWxfbm90ZWJvb2s6DQogICAgYXV0b3NpemU6IHllcw0KICAgIHNlbGZfY29udGFpbmVkOiB5ZXMNCiAgICB0b2M6IHllcw0KICAgIHRvY19kZXB0aDogMw0KICAgIHRvY19mbG9hdDogeWVzDQoNCiAgcGRmX2RvY3VtZW50Og0KICAgIHRvYzogeWVzDQogICAgdG9jX2RlcHRoOiAzDQotLS0NCg0KIyBVbml0IDEuIE9yZGVyIG9mIFByZWNlZGVuY2UNCg0KDQojIyBTbyB3aGF0IGlzIHRoZSBhbnN3ZXI/DQokJFxsYXJnZVxiZWdpbnthcnJheX17cmNscn0NCjMgXHRpbWVzIDQgLSAyIFx0aW1lcyA1ICYgPSAmICgzXHRpbWVzIDQpLSgyXHRpbWVzIDUpICYoMSlcXA0KKDMgXHRpbWVzIDQpIC0gKDIgXHRpbWVzIDUpICYgPSAmIDEyIC0gMTAgPSAyICYoMilcXA0KXGxlZnQoKDMgXHRpbWVzIDQpIC0gMlxyaWdodCkgXHRpbWVzIDUgJiA9ICYgKDEyIC0yKVx0aW1lcyA1ID0gNTAgJiAoMylcXA0KMyBcdGltZXMgKDQgLSAyKSBcdGltZXMgNSAmID0gJiAzXHRpbWVzIDJcdGltZXMgNSA9IDMwICAmICg0KVxcDQozIFx0aW1lcyBcbGVmdCg0IC0gKDIgXHRpbWVzIDUpXHJpZ2h0KSAmID0gJiAzXHRpbWVzICg0IC0gMTApPSAtMTggJiAoNSlcXA0KXGVuZHthcnJheX0kJA0KDQoNCiMjIENoYWxsZW5nZSBxdWVzdGlvbnMNCiQkXGxhcmdlXGJlZ2lue2FycmF5fXtyY2xyfQ0KMTAgLSAyXjIgKyAzICY9JiAxMCAtIDQgKyAzPSA5ICYoMSlcXA0KJiAmIFxcDQp7M14yIFx0aW1lcyA3IC0gMyArIDYgXG92ZXIgNCArIDJ9ICY9JiB7KDlcdGltZXMgNyktIDMgKyA2XG92ZXIgNn0gPSA2NiBcZGl2IDYgPSAxMSAmICgyKVxcDQpcZW5ke2FycmF5fSQkDQoNCiMgVW5pdCAyOiBFeHBvbmVudHMNCg0KIyMgQ2hhbGxlbmdlIHF1ZXN0aW9ucw0KDQpTaW1wbGlmeSB0aGUgZm9sbG93aW5nOg0KDQokJFxiZWdpbnthcnJheX17cmNscn0NCnsxIFxvdmVyIFxzcXJ0e3h9fSAmID0gJiB7MVxvdmVyIHheezFcb3ZlciAyfX0gPSB4XnstezFcb3ZlciAyfX0gJiAoMSlcXA0KezJeeCBcdGltZXMgOF4yIFxvdmVyIDE2fSAmID0gJiB7Ml54IFx0aW1lcyAoMl4zKV4yIFxvdmVyIDJeNH0gPSAyXnggXHRpbWVzIDJeNiBcdGltZXMgMl57LTR9ID0gMl57KHgrMil9ICYgKDIpXFwNClxlbmR7YXJyYXl9JCQNCg0KMykgVGhlIGh1bWFuIGhlYXJ0IGJlYXRzIGFib3V0IDcwIHRpbWVzIHBlciBtaW4uIEV4cHJlc3MgaW4gc2NpZW50aWZpYyBub3RhdGlvbiwgdGhlIG51bWJlciBvZiB0aW1lcyBhIGhlYXJ0IHdvdWxkIGJlIGV4cGVjdGVkIHRvIGJlYXQgaW4gNzIgeWVhcnMuDQoNCiQkXGJlZ2lue2FycmF5fXtsfQ0KezcwXG92ZXIgbWlufSBcdGltZXMgezYwIG1pblxvdmVyIGhyfSBcdGltZXMgezI0IGhyXG92ZXIgZGF5fSBcdGltZXMgezM2NSBkYXlzXG92ZXIgeXJ9IFx0aW1lcyB7NzIgeXJ9ICZcXA0KXHFxdWFkID0gN1x0aW1lcyAxMF4xIFx0aW1lcyA2IFx0aW1lcyAxMF4xIFx0aW1lcyAyLjQgXHRpbWVzIDEwXjEgXHRpbWVzIDMuNjUgXHRpbWVzIDEwXjIgXHRpbWVzIDcuMiAgXHRpbWVzIDEwXjEgXFwNClxxcXVhZCA9IDdcdGltZXMgNiBcdGltZXMgMi40IFx0aW1lcyAzLjY1IFx0aW1lcyA3LjIgIFx0aW1lcyAxMF57KDErMSsxKzIrMSl9IFxcDQpccXF1YWQgPSAyNjQ5MCBcdGltZXMgMTBeezZ9ID0gMi42NDkgXHRpbWVzIDEwXjQgXHRpbWVzIDEwXjYgXFwNClxxcXVhZCA9IDIuNjQ5IFx0aW1lcyAxMF57MTB9XFwNClxlbmR7YXJyYXl9JCQNCg0KIyBVbml0IDM6IEZyYWN0aW9ucw0KDQoNCiQkXGxhcmdlXGJlZ2lue2FycmF5fXtyY2xyfQ0KMnsyXG92ZXIgM30gXHRpbWVzIHsxXG92ZXIgNX0gKyAxezFcb3ZlciAyfSBcZGl2IDJ7MVxvdmVyIDJ9ICYgPSAmIHs4XG92ZXIgMyBcdGltZXMgNX0gKyB7ezNcb3ZlciAyfVxvdmVyIHs1XG92ZXIgMn19ID0gezhcb3ZlciAxNX0gKyB7OVxvdmVyMTV9ID0gezE3IFxvdmVyIDE1fSAmICgxKVxcDQomICYgXFwNCnt7XGxlZnQoezFcb3ZlciAzfSBccmlnaHQpXjJ9XHRpbWVzIDR7MVxvdmVyIDJ9XG92ZXIgM30gJiA9ICYge3sxXG92ZXIgOX0gXHRpbWVzIHs5XG92ZXIgMn1cb3ZlciAzfSA9IHsyIFx0aW1lcyB7MVxvdmVyIDJ9XG92ZXIgMiBcdGltZXMgM30gPSB7MVxvdmVyIDZ9ICYgKDIpXFwNClxlbmR7YXJyYXl9JCQNCg0KDQojIFVuaXQgNDogSWRlbnRpdHkNCg0KXCMjIFByb2JsZW0gb2YgSWRlbnRpdHkNCg0KR2l2ZSBhbiBleGFtcGxlIGFuZCBkZXRlcm1pbmUgdGhlIHZhbHVlIG9mICRcbGFyZ2UgSSQgZm9yIGVhY2ggcmVsYXRpb25zaGlwLg0KDQokJFxsYXJnZVxiZWdpbnthcnJheX17cmxyY3Jscn0NCmEgXHRpbWVzIEkgPSBhICYgSSA9IDEgJiAoMSkgJiAmIHthIFxvdmVyIEl9ID0gYSAmIEkgPSAxICYgKDIpXFwNCmEgLSBJID0gYSAmIEkgPSAwICYoMykgJiAgJiBhICsgSSA9IGEgJiBJID0gMCAmKDQpXFwNCmFeSSA9IGEgJiBJID0gMSAmKDUpICYgJiBhIFx0aW1lcyBhXkkgPSBhICYgST0wICYgKDYpXFwNClxlbmR7YXJyYXl9JCQNCg0KIyBVbml0IDU6IFJlY2lwcm9jYWwNCg0KIyMgRGV0ZXJtaW5pbmcgdGhlIHJlY2lwcm9jYWwNCklkZW50aWZ5IHRoZSByZWNpcHJvY2FsIGZvciBlYWNoIHJlbGF0aW9uc2hpcC4NCg0KJCRcbGFyZ2VcYmVnaW57YXJyYXl9e3JsY3JsfQ0KYSBcdGltZXMgSSA9IDEgJiBJID0gezFcb3ZlciBhfSAmICgxKSAmICYge2EgXG92ZXIgSX0gPSAxICYgSSA9IGEgJiAoMilcXA0KYSAtIEkgPSAwICYgSSA9IGEgJiAoMykgJiAgJiBhICsgSSA9IDAgJiBJID0gLWEgJiAoNClcXA0KYSBcdGltZXMgYV5JID0gMSAmIEkgPSAtMSAmICg1KSAmICYgYSBcdGltZXMgYV5JID0gYSAmIEkgPSAxICYgKDYpXFwNClxlbmR7YXJyYXl9JCQNCg0KDQojIFVuaXQgNjogQmFzaWMgbGF3cyBvZiBNYXRoDQoNCg0KIyMgUHJvZHVjaW5nIGEgdHJhaWwgbWl4DQoNCg0KIyMgUmVjaXBlDQoNCnxWb2x1bWUgfCBJbmdyZWRpZW50ICB8IENvc3QgLyAyNTAgZ20gfCAgICAgDQp8LS0tLXwtLS0tLS18LS0tLS0tfCANCnwxMDAgZ20gfHJvYXN0ZWQgYWxtb25kcyB8ICQ0LjAwIHwgICAgCTEuNjAgfA0KfDEwMCBnbSB8cm9hc3RlZCBwZWNhbnMgIHwgJDYuNTAgfCAgCTIuNjAgfA0KfDEwMCBnbSB8cm9hc3RlZCBjYXNoZXdzIHwgJDQuNzUgfCAgICAJMS45MCB8DQp8MTAwIGdtIHxzdW5mbG93ZXIgc2VlZHMgfCAkMC40MCB8ICAgCTAuMTYgfA0KfDEwMCBnbSB8cHVtcGtpbnMgc2VlZHMgIHwgJDAuNzUgfCAgCTAuMzAgfA0KfDE1MCBnbSB8ZHJpZWQgY2hlcnJpZXMgIHwgJDMuOTAgfCAJMi4zNCB8DQp8MjAwIGdtIHxyYWlzaW4gfCAkNS42MCB8CTQuNDggfA0KfDEwMCBnbSB8Y3JhbmJlcnJpZXMgfCAkNi45MCB8CTIuNzYgfA0KfDIwMCBnbSB8Y2hvY29sYXRlIGNoaXBzIHwgJDMuNTB8ICAgCTIuODAgfA0KfDEwIGdtIHxzZWEgc2FsdCB8JDAuMzUgfCAgIAkwLjAxIHwNCnwgNSBnbSB8Y2lubmFtb24gfCAkOC4wMCB8ICAgCTAuMTYgfA0KfCA1IGdtIHxncm93biBudXRtZWcgfCAkOS41MCB8CTAuMTkgfA0KfDExNzAgZ218VG90YWxzIHwgLSB8CTE5LjMwIHwNCgkNCg0KIyMgQ2hhbGxlbmdlIFF1ZXN0aW9ucw0KDQoqIFdoYXQgaXMgdGhlIGNvc3QgcGVyIGtpbG8/DQoNCiQkezE5LjMwXG92ZXIgMTE3MH0gPSAxNi41MCBccXF1YWQgXHFxdWFkKDEpJCQNCg0KKiBJZiB0aGUgbWFya2V0IHZhbHVlIGlzIFVTJDI1LjAwIHBlciA1MDAgZ20sIHdoYXQgaXMgdGhlIHByb2ZpdCBtYXJnaW4/DQoNCiQkXGhib3h7SW5jb21lOn1ccXVhZCB7MjVcb3ZlciA1MDBnbX0gPSB7NTBcb3ZlciAxa2d9IFxxcXVhZFxxcXVhZCAoMikkJA0KJCRcaGJveHtDb3N0On1ccXVhZCAxNi41MFxxcXVhZFxxcXVhZFxxcXVhZCQkDQokJFxoYm94e1Byb2ZpdDp9XHFxdWFkIDUwLjAwIC0gMTYuNTAgPSAzMy41MCAkJA0KJCRcaGJveHtQcm9maXQgbWFyZ2luOn1ccXVhZCB7MzMuNTAgXG92ZXIgNTB9ID0gNjdcJSQkDQoNCg0KIyMgUG91bmQgQ2FrZQ0KDQokJFxsYXJnZVxiZWdpbnthcnJheX17bHJyfQ0KSW5ncmVkaWVudCAmIEFtdC8ga2cgJiBDb3N0L2tnXFwNCkJ1dHRlciAmIDEJJiAyLjUJXFwJCQkNCkVnZ3MgJiAxICYJMy42CVxcCQkJDQpGbG91ciAmIDEJJiAxLjUJXFwJCQkNCk1pbGsgJiAxICYJMy44CVxcCQkJDQpTdWdhciAmIDEgJgkxLjgJXFwNClxoZmlsbCBUb3RhbHMgJiA1IGtnICYgMTMuMiBcXA0KXGhmaWxsIENvc3Qva2cgJiAmIHsxMy4yMCBcb3ZlciA1fSA9IDIuNjQgXFwNClxlbmR7YXJyYXl9JCQNCg==