#Clear the environment
rm(list=ls())
#Load libraries
library(stringr)
library(knitr)
Load the data into tempory raw data data frame. Use read.delim to parse out the file.
rawdat <- read.delim("https://raw.githubusercontent.com/Eric66-99/DATA-607/master/tournamentinfo.txt", header=FALSE, sep="|", skip = 4, stringsAsFactors = FALSE)
Create a data frame to hold the player data. Player’s Name, Player’s State, Total Number of Points, Player’s Pre-Rating (Average Pre Chess Rating of Opponents will be added later). The player data loaded into rawdat is in 3-line chunks. For each column the information needs to be extracted from the correct rows. For example, Name is in the second raw data column and first row. Player state is in the first raw data column and second row. Just need to specify what row is needed by using c(TRUE,FALSE,FALSE)] after the column variable. For example, rawdat$V2[c(TRUE,FALSE,FALSE)].
tourn <- data.frame(PlName = rawdat$V2[c(TRUE,FALSE,FALSE)], PlState=rawdat$V1[c(F,T,F)], PlPoints=rawdat$V3[c(T,F,F)])
tourn$PlPreRating <- as.numeric(str_replace_all(str_extract(rawdat$V2[c(F,T,F)], "R:[:blank:]+[:digit:]+"), "R:[:blank:]+",""))
Append data frame to hold opponent data after the 4th column (Player’s Pre-Rating). Extract the opponent data (column 4 to 10) from the rawdat data frame and append it to the tourn data frame.
for (j in 1:7) {
tourn[,j+4] = as.numeric(str_extract(rawdat[,j+3][c(TRUE, FALSE, FALSE)], "[:digit:]+"))
}
First, loop through all the data in the frame. Then loop through the rounds 1-7 and cross reference the opponent id for each round (tourn[i,j+4]) to append opponent rating (tourn$PlPreRating) to the tourn data frame.
for (i in 1:nrow(tourn)) {
for (j in 1:7) {
tourn[i,j+11] = as.numeric(tourn$PlPreRating[tourn[i,j+4]])
}
}
All data needed is appended to the data frame.
tourn
## PlName PlState PlPoints PlPreRating V5 V6 V7
## 1 GARY HUA ON 6.0 1794 39 21 18
## 2 DAKSHESH DARURI MI 6.0 1553 63 58 4
## 3 ADITYA BAJAJ MI 6.0 1384 8 61 25
## 4 PATRICK H SCHILLING MI 5.5 1716 23 28 2
## 5 HANSHI ZUO MI 5.5 1655 45 37 12
## 6 HANSEN SONG OH 5.0 1686 34 29 11
## 7 GARY DEE SWATHELL MI 5.0 1649 57 46 13
## 8 EZEKIEL HOUGHTON MI 5.0 1641 3 32 14
## 9 STEFANO LEE ON 5.0 1411 25 18 59
## 10 ANVIT RAO MI 5.0 1365 16 19 55
## 11 CAMERON WILLIAM MC LEMAN MI 4.5 1712 38 56 6
## 12 KENNETH J TACK MI 4.5 1663 42 33 5
## 13 TORRANCE HENRY JR MI 4.5 1666 36 27 7
## 14 BRADLEY SHAW MI 4.5 1610 54 44 8
## 15 ZACHARY JAMES HOUGHTON MI 4.5 1220 19 16 30
## 16 MIKE NIKITIN MI 4.0 1604 10 15 NA
## 17 RONALD GRZEGORCZYK MI 4.0 1629 48 41 26
## 18 DAVID SUNDEEN MI 4.0 1600 47 9 1
## 19 DIPANKAR ROY MI 4.0 1564 15 10 52
## 20 JASON ZHENG MI 4.0 1595 40 49 23
## 21 DINH DANG BUI ON 4.0 1563 43 1 47
## 22 EUGENE L MCCLURE MI 4.0 1555 64 52 28
## 23 ALAN BUI ON 4.0 1363 4 43 20
## 24 MICHAEL R ALDRICH MI 4.0 1229 28 47 43
## 25 LOREN SCHWIEBERT MI 3.5 1745 9 53 3
## 26 MAX ZHU ON 3.5 1579 49 40 17
## 27 GAURAV GIDWANI MI 3.5 1552 51 13 46
## 28 SOFIA ADINA STANESCU-BELLU MI 3.5 1507 24 4 22
## 29 CHIEDOZIE OKORIE MI 3.5 1602 50 6 38
## 30 GEORGE AVERY JONES ON 3.5 1522 52 64 15
## 31 RISHI SHETTY MI 3.5 1494 58 55 64
## 32 JOSHUA PHILIP MATHEWS ON 3.5 1441 61 8 44
## 33 JADE GE MI 3.5 1449 60 12 50
## 34 MICHAEL JEFFERY THOMAS MI 3.5 1399 6 60 37
## 35 JOSHUA DAVID LEE MI 3.5 1438 46 38 56
## 36 SIDDHARTH JHA MI 3.5 1355 13 57 51
## 37 AMIYATOSH PWNANANDAM MI 3.5 980 NA 5 34
## 38 BRIAN LIU MI 3.0 1423 11 35 29
## 39 JOEL R HENDON MI 3.0 1436 1 54 40
## 40 FOREST ZHANG MI 3.0 1348 20 26 39
## 41 KYLE WILLIAM MURPHY MI 3.0 1403 59 17 58
## 42 JARED GE MI 3.0 1332 12 50 57
## 43 ROBERT GLEN VASEY MI 3.0 1283 21 23 24
## 44 JUSTIN D SCHILLING MI 3.0 1199 NA 14 32
## 45 DEREK YAN MI 3.0 1242 5 51 60
## 46 JACOB ALEXANDER LAVALLEY MI 3.0 377 35 7 27
## 47 ERIC WRIGHT MI 2.5 1362 18 24 21
## 48 DANIEL KHAIN MI 2.5 1382 17 63 NA
## 49 MICHAEL J MARTIN MI 2.5 1291 26 20 63
## 50 SHIVAM JHA MI 2.5 1056 29 42 33
## 51 TEJAS AYYAGARI MI 2.5 1011 27 45 36
## 52 ETHAN GUO MI 2.5 935 30 22 19
## 53 JOSE C YBARRA MI 2.0 1393 NA 25 NA
## 54 LARRY HODGE MI 2.0 1270 14 39 61
## 55 ALEX KONG MI 2.0 1186 62 31 10
## 56 MARISA RICCI MI 2.0 1153 NA 11 35
## 57 MICHAEL LU MI 2.0 1092 7 36 42
## 58 VIRAJ MOHILE MI 2.0 917 31 2 41
## 59 SEAN M MC CORMICK MI 2.0 853 41 NA 9
## 60 JULIA SHEN MI 1.5 967 33 34 45
## 61 JEZZEL FARKAS ON 1.5 955 32 3 54
## 62 ASHWIN BALAJI MI 1.0 1530 55 NA NA
## 63 THOMAS JOSEPH HOSMER MI 1.0 1175 2 48 49
## 64 BEN LI MI 1.0 1163 22 30 31
## V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18
## 1 14 7 12 4 1436 1563 1600 1610 1649 1663 1716
## 2 17 16 20 7 1175 917 1716 1629 1604 1595 1649
## 3 21 11 13 12 1641 955 1745 1563 1712 1666 1663
## 4 26 5 19 1 1363 1507 1553 1579 1655 1564 1794
## 5 13 4 14 17 1242 980 1663 1666 1716 1610 1629
## 6 35 10 27 21 1399 1602 1712 1438 1365 1552 1563
## 7 11 1 9 2 1092 377 1666 1712 1794 1411 1553
## 8 9 47 28 19 1384 1441 1610 1411 1362 1507 1564
## 9 8 26 7 20 1745 1600 853 1641 1579 1649 1595
## 10 31 6 25 18 1604 1564 1186 1494 1686 1745 1600
## 11 7 3 34 26 1423 1153 1686 1649 1384 1399 1579
## 12 38 NA 1 3 1332 1449 1655 1423 NA 1794 1384
## 13 5 33 3 32 1355 1552 1649 1655 1449 1384 1441
## 14 1 27 5 31 1270 1199 1641 1794 1552 1655 1494
## 15 22 54 33 38 1564 1604 1522 1555 1270 1449 1423
## 16 39 2 36 NA 1365 1220 NA 1436 1553 1355 NA
## 17 2 23 22 5 1382 1403 1579 1553 1363 1555 1655
## 18 32 19 38 10 1362 1411 1794 1441 1564 1423 1365
## 19 28 18 4 8 1220 1365 935 1507 1600 1716 1641
## 20 41 28 2 9 1348 1291 1363 1403 1507 1553 1411
## 21 3 40 39 6 1283 1794 1362 1384 1348 1436 1686
## 22 15 NA 17 40 1163 935 1507 1220 NA 1629 1348
## 23 58 17 37 46 1716 1283 1595 917 1629 980 377
## 24 25 60 44 39 1507 1362 1283 1745 967 1199 1436
## 25 24 34 10 47 1411 1393 1384 1229 1399 1365 1362
## 26 4 9 32 11 1291 1348 1629 1716 1411 1441 1712
## 27 37 14 6 NA 1011 1666 377 980 1610 1686 NA
## 28 19 20 8 36 1229 1716 1555 1564 1595 1641 1355
## 29 34 52 48 NA 1056 1686 1423 1399 935 1382 NA
## 30 55 31 61 50 935 1163 1220 1186 1494 955 1056
## 31 10 30 50 14 917 1186 1163 1365 1522 1056 1610
## 32 18 51 26 13 955 1641 1199 1600 1011 1579 1666
## 33 36 13 15 51 967 1663 1056 1355 1666 1220 1011
## 34 29 25 11 52 1686 967 980 1602 1745 1712 935
## 35 6 57 52 48 377 1423 1153 1686 1092 935 1382
## 36 33 NA 16 28 1666 1092 1011 1449 NA 1604 1507
## 37 27 NA 23 61 NA 1655 1399 1552 NA 1363 955
## 38 12 NA 18 15 1712 1438 1602 1663 NA 1600 1220
## 39 16 44 21 24 1794 1270 1348 1604 1199 1563 1229
## 40 59 21 56 22 1595 1579 1436 853 1563 1153 1555
## 41 20 NA NA NA 853 1629 917 1595 NA NA NA
## 42 60 61 64 56 1663 1056 1092 967 955 1163 1153
## 43 63 59 46 55 1563 1363 1229 1175 853 377 1186
## 44 53 39 24 59 NA 1610 1441 1393 1436 1229 853
## 45 56 63 55 58 1655 1011 967 1153 1175 1186 917
## 46 50 64 43 23 1438 1649 1552 1056 1163 1283 1363
## 47 61 8 51 25 1600 1229 1563 955 1641 1011 1745
## 48 52 NA 29 35 1629 1175 NA 935 NA 1602 1438
## 49 64 58 NA NA 1579 1595 1175 1163 917 NA NA
## 50 46 NA 31 30 1602 1332 1449 377 NA 1494 1522
## 51 57 32 47 33 1552 1242 1355 1092 1441 1362 1449
## 52 48 29 35 34 1522 1555 1564 1382 1602 1438 1399
## 53 44 NA 57 NA NA 1745 NA 1199 NA 1092 NA
## 54 NA 15 59 64 1610 1436 955 NA 1220 853 1163
## 55 30 NA 45 43 1530 1494 1365 1522 NA 1242 1283
## 56 45 NA 40 42 NA 1712 1438 1242 NA 1348 1332
## 57 51 35 53 NA 1649 1355 1332 1011 1438 1393 NA
## 58 23 49 NA 45 1494 1553 1403 1363 1291 NA 1242
## 59 40 43 54 44 1403 NA 1411 1348 1283 1270 1199
## 60 42 24 NA NA 1449 1399 1242 1332 1229 NA NA
## 61 47 42 30 37 1441 1384 1270 1362 1332 1522 980
## 62 NA NA NA NA 1186 NA NA NA NA NA NA
## 63 43 45 NA NA 1553 1382 1291 1283 1242 NA NA
## 64 49 46 42 54 1555 1522 1494 1291 377 1332 1270
Calculate the average opponent pre-rating for each player. Ratings are in columns 12 - 18.
tourn["OppPreRating"] <- round(rowMeans(tourn[, 12:18], na.rm = TRUE ), digits = 0)
tourn
## PlName PlState PlPoints PlPreRating V5 V6 V7
## 1 GARY HUA ON 6.0 1794 39 21 18
## 2 DAKSHESH DARURI MI 6.0 1553 63 58 4
## 3 ADITYA BAJAJ MI 6.0 1384 8 61 25
## 4 PATRICK H SCHILLING MI 5.5 1716 23 28 2
## 5 HANSHI ZUO MI 5.5 1655 45 37 12
## 6 HANSEN SONG OH 5.0 1686 34 29 11
## 7 GARY DEE SWATHELL MI 5.0 1649 57 46 13
## 8 EZEKIEL HOUGHTON MI 5.0 1641 3 32 14
## 9 STEFANO LEE ON 5.0 1411 25 18 59
## 10 ANVIT RAO MI 5.0 1365 16 19 55
## 11 CAMERON WILLIAM MC LEMAN MI 4.5 1712 38 56 6
## 12 KENNETH J TACK MI 4.5 1663 42 33 5
## 13 TORRANCE HENRY JR MI 4.5 1666 36 27 7
## 14 BRADLEY SHAW MI 4.5 1610 54 44 8
## 15 ZACHARY JAMES HOUGHTON MI 4.5 1220 19 16 30
## 16 MIKE NIKITIN MI 4.0 1604 10 15 NA
## 17 RONALD GRZEGORCZYK MI 4.0 1629 48 41 26
## 18 DAVID SUNDEEN MI 4.0 1600 47 9 1
## 19 DIPANKAR ROY MI 4.0 1564 15 10 52
## 20 JASON ZHENG MI 4.0 1595 40 49 23
## 21 DINH DANG BUI ON 4.0 1563 43 1 47
## 22 EUGENE L MCCLURE MI 4.0 1555 64 52 28
## 23 ALAN BUI ON 4.0 1363 4 43 20
## 24 MICHAEL R ALDRICH MI 4.0 1229 28 47 43
## 25 LOREN SCHWIEBERT MI 3.5 1745 9 53 3
## 26 MAX ZHU ON 3.5 1579 49 40 17
## 27 GAURAV GIDWANI MI 3.5 1552 51 13 46
## 28 SOFIA ADINA STANESCU-BELLU MI 3.5 1507 24 4 22
## 29 CHIEDOZIE OKORIE MI 3.5 1602 50 6 38
## 30 GEORGE AVERY JONES ON 3.5 1522 52 64 15
## 31 RISHI SHETTY MI 3.5 1494 58 55 64
## 32 JOSHUA PHILIP MATHEWS ON 3.5 1441 61 8 44
## 33 JADE GE MI 3.5 1449 60 12 50
## 34 MICHAEL JEFFERY THOMAS MI 3.5 1399 6 60 37
## 35 JOSHUA DAVID LEE MI 3.5 1438 46 38 56
## 36 SIDDHARTH JHA MI 3.5 1355 13 57 51
## 37 AMIYATOSH PWNANANDAM MI 3.5 980 NA 5 34
## 38 BRIAN LIU MI 3.0 1423 11 35 29
## 39 JOEL R HENDON MI 3.0 1436 1 54 40
## 40 FOREST ZHANG MI 3.0 1348 20 26 39
## 41 KYLE WILLIAM MURPHY MI 3.0 1403 59 17 58
## 42 JARED GE MI 3.0 1332 12 50 57
## 43 ROBERT GLEN VASEY MI 3.0 1283 21 23 24
## 44 JUSTIN D SCHILLING MI 3.0 1199 NA 14 32
## 45 DEREK YAN MI 3.0 1242 5 51 60
## 46 JACOB ALEXANDER LAVALLEY MI 3.0 377 35 7 27
## 47 ERIC WRIGHT MI 2.5 1362 18 24 21
## 48 DANIEL KHAIN MI 2.5 1382 17 63 NA
## 49 MICHAEL J MARTIN MI 2.5 1291 26 20 63
## 50 SHIVAM JHA MI 2.5 1056 29 42 33
## 51 TEJAS AYYAGARI MI 2.5 1011 27 45 36
## 52 ETHAN GUO MI 2.5 935 30 22 19
## 53 JOSE C YBARRA MI 2.0 1393 NA 25 NA
## 54 LARRY HODGE MI 2.0 1270 14 39 61
## 55 ALEX KONG MI 2.0 1186 62 31 10
## 56 MARISA RICCI MI 2.0 1153 NA 11 35
## 57 MICHAEL LU MI 2.0 1092 7 36 42
## 58 VIRAJ MOHILE MI 2.0 917 31 2 41
## 59 SEAN M MC CORMICK MI 2.0 853 41 NA 9
## 60 JULIA SHEN MI 1.5 967 33 34 45
## 61 JEZZEL FARKAS ON 1.5 955 32 3 54
## 62 ASHWIN BALAJI MI 1.0 1530 55 NA NA
## 63 THOMAS JOSEPH HOSMER MI 1.0 1175 2 48 49
## 64 BEN LI MI 1.0 1163 22 30 31
## V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 OppPreRating
## 1 14 7 12 4 1436 1563 1600 1610 1649 1663 1716 1605
## 2 17 16 20 7 1175 917 1716 1629 1604 1595 1649 1469
## 3 21 11 13 12 1641 955 1745 1563 1712 1666 1663 1564
## 4 26 5 19 1 1363 1507 1553 1579 1655 1564 1794 1574
## 5 13 4 14 17 1242 980 1663 1666 1716 1610 1629 1501
## 6 35 10 27 21 1399 1602 1712 1438 1365 1552 1563 1519
## 7 11 1 9 2 1092 377 1666 1712 1794 1411 1553 1372
## 8 9 47 28 19 1384 1441 1610 1411 1362 1507 1564 1468
## 9 8 26 7 20 1745 1600 853 1641 1579 1649 1595 1523
## 10 31 6 25 18 1604 1564 1186 1494 1686 1745 1600 1554
## 11 7 3 34 26 1423 1153 1686 1649 1384 1399 1579 1468
## 12 38 NA 1 3 1332 1449 1655 1423 NA 1794 1384 1506
## 13 5 33 3 32 1355 1552 1649 1655 1449 1384 1441 1498
## 14 1 27 5 31 1270 1199 1641 1794 1552 1655 1494 1515
## 15 22 54 33 38 1564 1604 1522 1555 1270 1449 1423 1484
## 16 39 2 36 NA 1365 1220 NA 1436 1553 1355 NA 1386
## 17 2 23 22 5 1382 1403 1579 1553 1363 1555 1655 1499
## 18 32 19 38 10 1362 1411 1794 1441 1564 1423 1365 1480
## 19 28 18 4 8 1220 1365 935 1507 1600 1716 1641 1426
## 20 41 28 2 9 1348 1291 1363 1403 1507 1553 1411 1411
## 21 3 40 39 6 1283 1794 1362 1384 1348 1436 1686 1470
## 22 15 NA 17 40 1163 935 1507 1220 NA 1629 1348 1300
## 23 58 17 37 46 1716 1283 1595 917 1629 980 377 1214
## 24 25 60 44 39 1507 1362 1283 1745 967 1199 1436 1357
## 25 24 34 10 47 1411 1393 1384 1229 1399 1365 1362 1363
## 26 4 9 32 11 1291 1348 1629 1716 1411 1441 1712 1507
## 27 37 14 6 NA 1011 1666 377 980 1610 1686 NA 1222
## 28 19 20 8 36 1229 1716 1555 1564 1595 1641 1355 1522
## 29 34 52 48 NA 1056 1686 1423 1399 935 1382 NA 1314
## 30 55 31 61 50 935 1163 1220 1186 1494 955 1056 1144
## 31 10 30 50 14 917 1186 1163 1365 1522 1056 1610 1260
## 32 18 51 26 13 955 1641 1199 1600 1011 1579 1666 1379
## 33 36 13 15 51 967 1663 1056 1355 1666 1220 1011 1277
## 34 29 25 11 52 1686 967 980 1602 1745 1712 935 1375
## 35 6 57 52 48 377 1423 1153 1686 1092 935 1382 1150
## 36 33 NA 16 28 1666 1092 1011 1449 NA 1604 1507 1388
## 37 27 NA 23 61 NA 1655 1399 1552 NA 1363 955 1385
## 38 12 NA 18 15 1712 1438 1602 1663 NA 1600 1220 1539
## 39 16 44 21 24 1794 1270 1348 1604 1199 1563 1229 1430
## 40 59 21 56 22 1595 1579 1436 853 1563 1153 1555 1391
## 41 20 NA NA NA 853 1629 917 1595 NA NA NA 1248
## 42 60 61 64 56 1663 1056 1092 967 955 1163 1153 1150
## 43 63 59 46 55 1563 1363 1229 1175 853 377 1186 1107
## 44 53 39 24 59 NA 1610 1441 1393 1436 1229 853 1327
## 45 56 63 55 58 1655 1011 967 1153 1175 1186 917 1152
## 46 50 64 43 23 1438 1649 1552 1056 1163 1283 1363 1358
## 47 61 8 51 25 1600 1229 1563 955 1641 1011 1745 1392
## 48 52 NA 29 35 1629 1175 NA 935 NA 1602 1438 1356
## 49 64 58 NA NA 1579 1595 1175 1163 917 NA NA 1286
## 50 46 NA 31 30 1602 1332 1449 377 NA 1494 1522 1296
## 51 57 32 47 33 1552 1242 1355 1092 1441 1362 1449 1356
## 52 48 29 35 34 1522 1555 1564 1382 1602 1438 1399 1495
## 53 44 NA 57 NA NA 1745 NA 1199 NA 1092 NA 1345
## 54 NA 15 59 64 1610 1436 955 NA 1220 853 1163 1206
## 55 30 NA 45 43 1530 1494 1365 1522 NA 1242 1283 1406
## 56 45 NA 40 42 NA 1712 1438 1242 NA 1348 1332 1414
## 57 51 35 53 NA 1649 1355 1332 1011 1438 1393 NA 1363
## 58 23 49 NA 45 1494 1553 1403 1363 1291 NA 1242 1391
## 59 40 43 54 44 1403 NA 1411 1348 1283 1270 1199 1319
## 60 42 24 NA NA 1449 1399 1242 1332 1229 NA NA 1330
## 61 47 42 30 37 1441 1384 1270 1362 1332 1522 980 1327
## 62 NA NA NA NA 1186 NA NA NA NA NA NA 1186
## 63 43 45 NA NA 1553 1382 1291 1283 1242 NA NA 1350
## 64 49 46 42 54 1555 1522 1494 1291 377 1332 1270 1263
Remove coloumns not needed in report.
tourn[, 5:18]<-NULL
Preview Report
tourn
## PlName PlState PlPoints PlPreRating
## 1 GARY HUA ON 6.0 1794
## 2 DAKSHESH DARURI MI 6.0 1553
## 3 ADITYA BAJAJ MI 6.0 1384
## 4 PATRICK H SCHILLING MI 5.5 1716
## 5 HANSHI ZUO MI 5.5 1655
## 6 HANSEN SONG OH 5.0 1686
## 7 GARY DEE SWATHELL MI 5.0 1649
## 8 EZEKIEL HOUGHTON MI 5.0 1641
## 9 STEFANO LEE ON 5.0 1411
## 10 ANVIT RAO MI 5.0 1365
## 11 CAMERON WILLIAM MC LEMAN MI 4.5 1712
## 12 KENNETH J TACK MI 4.5 1663
## 13 TORRANCE HENRY JR MI 4.5 1666
## 14 BRADLEY SHAW MI 4.5 1610
## 15 ZACHARY JAMES HOUGHTON MI 4.5 1220
## 16 MIKE NIKITIN MI 4.0 1604
## 17 RONALD GRZEGORCZYK MI 4.0 1629
## 18 DAVID SUNDEEN MI 4.0 1600
## 19 DIPANKAR ROY MI 4.0 1564
## 20 JASON ZHENG MI 4.0 1595
## 21 DINH DANG BUI ON 4.0 1563
## 22 EUGENE L MCCLURE MI 4.0 1555
## 23 ALAN BUI ON 4.0 1363
## 24 MICHAEL R ALDRICH MI 4.0 1229
## 25 LOREN SCHWIEBERT MI 3.5 1745
## 26 MAX ZHU ON 3.5 1579
## 27 GAURAV GIDWANI MI 3.5 1552
## 28 SOFIA ADINA STANESCU-BELLU MI 3.5 1507
## 29 CHIEDOZIE OKORIE MI 3.5 1602
## 30 GEORGE AVERY JONES ON 3.5 1522
## 31 RISHI SHETTY MI 3.5 1494
## 32 JOSHUA PHILIP MATHEWS ON 3.5 1441
## 33 JADE GE MI 3.5 1449
## 34 MICHAEL JEFFERY THOMAS MI 3.5 1399
## 35 JOSHUA DAVID LEE MI 3.5 1438
## 36 SIDDHARTH JHA MI 3.5 1355
## 37 AMIYATOSH PWNANANDAM MI 3.5 980
## 38 BRIAN LIU MI 3.0 1423
## 39 JOEL R HENDON MI 3.0 1436
## 40 FOREST ZHANG MI 3.0 1348
## 41 KYLE WILLIAM MURPHY MI 3.0 1403
## 42 JARED GE MI 3.0 1332
## 43 ROBERT GLEN VASEY MI 3.0 1283
## 44 JUSTIN D SCHILLING MI 3.0 1199
## 45 DEREK YAN MI 3.0 1242
## 46 JACOB ALEXANDER LAVALLEY MI 3.0 377
## 47 ERIC WRIGHT MI 2.5 1362
## 48 DANIEL KHAIN MI 2.5 1382
## 49 MICHAEL J MARTIN MI 2.5 1291
## 50 SHIVAM JHA MI 2.5 1056
## 51 TEJAS AYYAGARI MI 2.5 1011
## 52 ETHAN GUO MI 2.5 935
## 53 JOSE C YBARRA MI 2.0 1393
## 54 LARRY HODGE MI 2.0 1270
## 55 ALEX KONG MI 2.0 1186
## 56 MARISA RICCI MI 2.0 1153
## 57 MICHAEL LU MI 2.0 1092
## 58 VIRAJ MOHILE MI 2.0 917
## 59 SEAN M MC CORMICK MI 2.0 853
## 60 JULIA SHEN MI 1.5 967
## 61 JEZZEL FARKAS ON 1.5 955
## 62 ASHWIN BALAJI MI 1.0 1530
## 63 THOMAS JOSEPH HOSMER MI 1.0 1175
## 64 BEN LI MI 1.0 1163
## OppPreRating
## 1 1605
## 2 1469
## 3 1564
## 4 1574
## 5 1501
## 6 1519
## 7 1372
## 8 1468
## 9 1523
## 10 1554
## 11 1468
## 12 1506
## 13 1498
## 14 1515
## 15 1484
## 16 1386
## 17 1499
## 18 1480
## 19 1426
## 20 1411
## 21 1470
## 22 1300
## 23 1214
## 24 1357
## 25 1363
## 26 1507
## 27 1222
## 28 1522
## 29 1314
## 30 1144
## 31 1260
## 32 1379
## 33 1277
## 34 1375
## 35 1150
## 36 1388
## 37 1385
## 38 1539
## 39 1430
## 40 1391
## 41 1248
## 42 1150
## 43 1107
## 44 1327
## 45 1152
## 46 1358
## 47 1392
## 48 1356
## 49 1286
## 50 1296
## 51 1356
## 52 1495
## 53 1345
## 54 1206
## 55 1406
## 56 1414
## 57 1363
## 58 1391
## 59 1319
## 60 1330
## 61 1327
## 62 1186
## 63 1350
## 64 1263
Create the output file
write.csv(tourn, file = "tournamentAverages.csv")