summary(df)
n campamento sexo C P O
Min. :1 Futura Esperanza :2 F: 9 Min. :0.0000 Min. :0 Min. :0.00000
1st Qu.:1 Laderas de Angelm\303\263:3 M:10 1st Qu.:0.0000 1st Qu.:0 1st Qu.:0.00000
Median :1 Mediaguas :7 Median :0.0000 Median :0 Median :0.00000
Mean :1 Nuevo Amanecer :2 Mean :0.2222 Mean :0 Mean :0.05556
3rd Qu.:1 Pelluhuin :5 3rd Qu.:0.0000 3rd Qu.:0 3rd Qu.:0.00000
Max. :1 Max. :1.0000 Max. :0 Max. :1.00000
NA's :1 NA's :1 NA's :1
COPD c e o ceod tto
Min. :0.0000 Min. :0.000 Min. :0.0000 Min. :0.0000 Min. :0.000 NO:10
1st Qu.:0.0000 1st Qu.:0.500 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:1.000 SI: 9
Median :0.0000 Median :1.000 Median :0.0000 Median :0.0000 Median :3.000
Mean :0.2778 Mean :2.053 Mean :0.4737 Mean :0.7895 Mean :3.316
3rd Qu.:0.7500 3rd Qu.:4.000 3rd Qu.:0.5000 3rd Qu.:1.0000 3rd Qu.:5.500
Max. :1.0000 Max. :6.000 Max. :4.0000 Max. :6.0000 Max. :9.000
NA's :1
NA
diferenciacampamentos <- aov(df$ceod~df$campamento)
diferenciacampamentos
summary(diferenciacampamentos)
Df Sum Sq Mean Sq F value Pr(>F)
df$campamento 4 87.28 21.820 4.572 0.0143 *
Residuals 14 66.82 4.773
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(diferenciacampamentos)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = df$ceod ~ df$campamento)
$`df$campamento`
diff lwr upr p adj
Laderas de Angelm\303\263-Futura Esperanza -0.6666667 -6.8810860 5.547753 0.9969750
Mediaguas-Futura Esperanza -1.8571429 -7.3153299 3.601044 0.8232728
Nuevo Amanecer-Futura Esperanza 3.5000000 -3.3075553 10.307555 0.5195993
Pelluhuin -Futura Esperanza 2.8000000 -2.8956094 8.495609 0.5601798
Mediaguas-Laderas de Angelm\303\263 -1.1904762 -5.8881356 3.507183 0.9294325
Nuevo Amanecer-Laderas de Angelm\303\263 4.1666667 -2.0477526 10.381086 0.2774677
Pelluhuin -Laderas de Angelm\303\263 3.4666667 -1.5048688 8.438202 0.2452723
Nuevo Amanecer-Mediaguas 5.3571429 -0.1010442 10.815330 0.0554990
Pelluhuin -Mediaguas 4.6571429 0.6710466 8.643239 0.0189980
Pelluhuin -Nuevo Amanecer -0.7000000 -6.3956094 4.995609 0.9948946
diferenciacampamentosparacomp_c <- aov(df$c~df$campamento)
diferenciacampamentosparacomp_c
summary(diferenciacampamentosparacomp_c)
Df Sum Sq Mean Sq F value Pr(>F)
df$campamento 4 44.89 11.223 4.613 0.0138 *
Residuals 14 34.06 2.433
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(diferenciacampamentosparacomp_c)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = df$c ~ df$campamento)
$`df$campamento`
diff lwr upr p adj
Laderas de Angelm\303\263-Futura Esperanza 2.0000000 -2.4364853 6.436485 0.6347339
Mediaguas-Futura Esperanza 0.8571429 -3.0394668 4.753753 0.9564190
Nuevo Amanecer-Futura Esperanza 5.0000000 0.1400739 9.859926 0.0424578
Pelluhuin -Futura Esperanza 3.4000000 -0.6661059 7.466106 0.1226837
Mediaguas-Laderas de Angelm\303\263 -1.1428571 -4.4965248 2.210810 0.8224818
Nuevo Amanecer-Laderas de Angelm\303\263 3.0000000 -1.4364853 7.436485 0.2703450
Pelluhuin -Laderas de Angelm\303\263 1.4000000 -2.1491882 4.949188 0.7354932
Nuevo Amanecer-Mediaguas 4.1428571 0.2462475 8.039467 0.0348850
Pelluhuin -Mediaguas 2.5428571 -0.3028242 5.388538 0.0902524
Pelluhuin -Nuevo Amanecer -1.6000000 -5.6661059 2.466106 0.7371468
chisq.test(df$tto,df$campamento)
Chi-squared approximation may be incorrect
Pearson's Chi-squared test
data: df$tto and df$campamento
X-squared = 7.3105, df = 4, p-value = 0.1204
t.test(df$ceod~df$sexo)
Welch Two Sample t-test
data: df$ceod by df$sexo
t = -2.0412, df = 16.556, p-value = 0.0575
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-5.08926954 0.08926954
sample estimates:
mean in group F mean in group M
2.0 4.5
There were 50 or more warnings (use warnings() to see the first 50)
t.test(df$c~df$sexo)
Welch Two Sample t-test
data: df$c by df$sexo
t = -2.0732, df = 14.019, p-value = 0.05707
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.63935420 0.06157643
sample estimates:
mean in group F mean in group M
1.111111 2.900000
diferenciacampamentoscopd <- aov(df$COPD~df$campamento)
diferenciacampamentoscopd
Call:
aov(formula = df$COPD ~ df$campamento)
Terms:
df$campamento Residuals
Sum of Squares 0.411111 3.200000
Deg. of Freedom 4 13
Residual standard error: 0.4961389
Estimated effects may be unbalanced
1 observation deleted due to missingness
summary(diferenciacampamentoscopd)
Df Sum Sq Mean Sq F value Pr(>F)
df$campamento 4 0.411 0.1028 0.418 0.793
Residuals 13 3.200 0.2462
1 observation deleted due to missingness
diferenciacampamentosC<- aov(df$C~df$campamento)
diferenciacampamentosC
Call:
aov(formula = df$C ~ df$campamento)
Terms:
df$campamento Residuals
Sum of Squares 0.5777778 2.5333333
Deg. of Freedom 4 13
Residual standard error: 0.4414429
Estimated effects may be unbalanced
1 observation deleted due to missingness
summary(diferenciacampamentosC)
Df Sum Sq Mean Sq F value Pr(>F)
df$campamento 4 0.5778 0.1444 0.741 0.581
Residuals 13 2.5333 0.1949
1 observation deleted due to missingness
df %>%
group_by(campamento) %>%
summarise(n=n(), Prom = mean(COPD), DE = sd(COPD), mediana=median(COPD)) %>%
ungroup()
df %>%
group_by(sexo) %>%
summarise(n=n(), Prom = mean(COPD), DE = sd(COPD), mediana=median(COPD)) %>%
ungroup()
df %>%
group_by(sexo) %>%
summarise(n=n(), Prom = mean(C), DE = sd(C), mediana=median(C)) %>%
ungroup()
boxplot(df$COPD~df$sexo)
t.test(df$COPD~df$sexo)
Welch Two Sample t-test
data: df$COPD by df$sexo
t = 1.6036, df = 13.517, p-value = 0.1319
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.1140016 0.7806683
sample estimates:
mean in group F mean in group M
0.4444444 0.1111111
df %>%
group_by(tto) %>%
summarise(n=n(), Prom = mean(COPD), DE = sd(COPD), mediana=median(COPD)) %>%
ungroup()
df %>%
group_by(tto) %>%
summarise(n=n(), Prom = mean(ceod), DE = sd(ceod), mediana=median(ceod)) %>%
ungroup()
t.test(df$ceod~df$tto)
Welch Two Sample t-test
data: df$ceod by df$tto
t = 1.2628, df = 16.929, p-value = 0.2238
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.111237 4.422348
sample estimates:
mean in group NO mean in group SI
4.100000 2.444444
df %>%
group_by(tto) %>%
summarise(n=n(), Prom = mean(c), DE = sd(c), mediana=median(c)) %>%
ungroup()
df %>%
group_by(tto) %>%
summarise(n=n(), Prom = mean(e), DE = sd(e), mediana=median(e)) %>%
ungroup()
df %>%
group_by(tto) %>%
summarise(n=n(), Prom = mean(o), DE = sd(o), mediana=median(o)) %>%
ungroup()
t.test(df$ceod~df$tto)
Welch Two Sample t-test
data: df$ceod by df$tto
t = 1.2628, df = 16.929, p-value = 0.2238
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.111237 4.422348
sample estimates:
mean in group NO mean in group SI
4.100000 2.444444
sd(df$ceod)
[1] 2.925988
sd(df$COPD)
[1] NA