Week 4 Discussion

LT.C40

If \(T: \mathbb{C}^{2} -> \mathbb{C}^{2}\)

satisfies

\(T{({\lbrack\begin{array}{c}2\\[4pt]1\end{array}\rbrack})}={\lbrack\begin{array}{c}3\\[4pt]4\end{array}\rbrack} and T{({\lbrack\begin{array}{c}1\\[4pt]1\end{array}\rbrack})}={\lbrack\begin{array}{c}-1\\[4pt]2\end{array}\rbrack}\)

, find \(T{({\lbrack\begin{array}{c}4\\[4pt]3\end{array}\rbrack})}\)

\[{\lbrack\begin{array}{c}4\\[4pt]3\end{array}\rbrack}={\lbrack\begin{array}{c}2\\[4pt]1\end{array}\rbrack}+2{\lbrack\begin{array}{c}1\\[4pt]1\end{array}\rbrack}\]

\[T\left ( \begin{bmatrix} 4\\ 3 \end{bmatrix} \right ) = T\left ( \begin{bmatrix} 2\\1 \end{bmatrix} + 2 \begin{bmatrix} 1\\ 1 \end{bmatrix}\right )\]

\[T\left ( \begin{bmatrix} 2\\ 1 \end{bmatrix} \right ) + 2T\left ( \begin{bmatrix} 1\\1 \end{bmatrix} \right )\]

\[= \begin{bmatrix} 3\\ 4 \end{bmatrix} + 2 \begin{bmatrix} -1\\2 \end{bmatrix}\]

\[= \begin{bmatrix} 1\\ 8 \end{bmatrix}\]