Models with gender added.
m_utility_val_g <- lmer(PostUV_ave ~ Int + PreUV_ave*PreEff_Ave + Gender + (1|ClassTeacher), data = df)
sjPlot::sjt.lmer(m_utility_val_g)
## Computing p-values via Kenward-Roger approximation. Use `p.kr = FALSE` if computation takes too long.
|
|
PostUV_ave
|
|
|
B
|
CI
|
p
|
Fixed Parts
|
(Intercept)
|
|
5.52
|
2.31 – 8.72
|
<.001
|
Int
|
|
0.44
|
0.04 – 0.85
|
.034
|
PreUV_ave
|
|
-0.08
|
-0.70 – 0.55
|
.809
|
PreEff_Ave
|
|
-0.53
|
-1.17 – 0.11
|
.108
|
Gender
|
|
-0.29
|
-0.69 – 0.11
|
.156
|
PreUV_ave:PreEff_Ave
|
|
0.11
|
-0.01 – 0.22
|
.074
|
Random Parts
|
σ2
|
|
1.758
|
τ00, ClassTeacher
|
|
0.083
|
NClassTeacher
|
|
8
|
ICCClassTeacher
|
|
0.045
|
Observations
|
|
170
|
R2 / Ω02
|
|
.280 / .279
|
m_val_g <- lmer(PostVal_Ave ~ Int + PreVal_Ave*PreEff_Ave + Gender + (1|ClassTeacher), data = df)
sjPlot::sjt.lmer(m_val_g)
## Computing p-values via Kenward-Roger approximation. Use `p.kr = FALSE` if computation takes too long.
|
|
PostVal_Ave
|
|
|
B
|
CI
|
p
|
Fixed Parts
|
(Intercept)
|
|
3.77
|
0.41 – 7.12
|
.029
|
Int
|
|
0.32
|
-0.02 – 0.65
|
.066
|
PreVal_Ave
|
|
0.29
|
-0.34 – 0.92
|
.369
|
PreEff_Ave
|
|
-0.31
|
-0.98 – 0.37
|
.373
|
Gender
|
|
-0.07
|
-0.40 – 0.27
|
.695
|
PreVal_Ave:PreEff_Ave
|
|
0.05
|
-0.06 – 0.17
|
.366
|
Random Parts
|
σ2
|
|
1.258
|
τ00, ClassTeacher
|
|
0.097
|
NClassTeacher
|
|
8
|
ICCClassTeacher
|
|
0.071
|
Observations
|
|
177
|
R2 / Ω02
|
|
.323 / .322
|
m_interest_g <- lmer(PostInt_Ave ~ Int + PreInt_Ave*PreEff_Ave + Gender + (1|ClassTeacher), data = df)
sjPlot::sjt.lmer(m_interest_g)
## Computing p-values via Kenward-Roger approximation. Use `p.kr = FALSE` if computation takes too long.
|
|
PostInt_Ave
|
|
|
B
|
CI
|
p
|
Fixed Parts
|
(Intercept)
|
|
-0.80
|
-5.15 – 3.54
|
.718
|
Int
|
|
0.02
|
-0.38 – 0.41
|
.933
|
PreInt_Ave
|
|
1.08
|
0.28 – 1.88
|
.009
|
PreEff_Ave
|
|
0.60
|
-0.22 – 1.43
|
.151
|
Gender
|
|
-0.26
|
-0.66 – 0.13
|
.193
|
PreInt_Ave:PreEff_Ave
|
|
-0.10
|
-0.25 – 0.05
|
.178
|
Random Parts
|
σ2
|
|
1.724
|
τ00, ClassTeacher
|
|
0.223
|
NClassTeacher
|
|
8
|
ICCClassTeacher
|
|
0.115
|
Observations
|
|
177
|
R2 / Ω02
|
|
.347 / .346
|
Participant flow
df <- tbl_df(df)
# UTILITY VALUE
df %>%
filter(is.na(PreUV_ave)) # 3 students missing pre UV
## # A tibble: 3 x 13
## Gender Age PreUV_all_ave PostUV_all_ave PreInt_Ave PreEff_Ave Int
## <int> <int> <dbl> <dbl> <dbl> <dbl> <int>
## 1 1 10 NA 6.2 4.0 6.2 1
## 2 0 11 NA 2.4 4.6 4.2 1
## 3 0 11 NA 4.8 7.0 5.4 0
## # ... with 6 more variables: PreUV_ave <dbl>, PostUV_ave <dbl>,
## # PostInt_Ave <dbl>, PreVal_Ave <dbl>, PostVal_Ave <dbl>,
## # ClassTeacher <fctr>
df %>%
filter(is.na(PostUV_ave)) # 20 students missing pre UV
## # A tibble: 20 x 13
## Gender Age PreUV_all_ave PostUV_all_ave PreInt_Ave PreEff_Ave Int
## <int> <int> <dbl> <dbl> <dbl> <dbl> <int>
## 1 0 11 7.0 NA 7.00 7.0 1
## 2 0 10 3.6 NA 5.60 3.2 NA
## 3 0 11 3.6 NA 4.40 6.2 1
## 4 0 11 6.8 NA 6.80 5.4 1
## 5 0 11 6.8 NA 6.40 6.4 1
## 6 1 11 7.0 NA 7.00 6.8 1
## 7 0 10 5.6 NA 6.00 5.4 0
## 8 1 11 6.4 NA 6.80 3.0 NA
## 9 1 11 5.2 NA 7.00 5.6 0
## 10 1 10 NA NA 6.75 6.6 NA
## 11 0 10 7.0 NA 7.00 7.0 1
## 12 1 10 6.4 NA 6.60 5.8 1
## 13 0 10 7.0 NA 7.00 6.4 1
## 14 0 11 4.8 NA 6.60 5.8 0
## 15 1 10 5.4 NA 6.80 5.6 0
## 16 0 10 5.8 NA 6.40 3.6 1
## 17 1 11 6.4 NA 6.60 5.8 0
## 18 0 10 5.2 NA 5.00 2.8 NA
## 19 0 11 4.2 NA 2.25 6.2 0
## 20 0 10 2.8 NA 1.00 3.4 NA
## # ... with 6 more variables: PreUV_ave <dbl>, PostUV_ave <dbl>,
## # PostInt_Ave <dbl>, PreVal_Ave <dbl>, PostVal_Ave <dbl>,
## # ClassTeacher <fctr>
df %>%
filter(is.na(PreUV_ave) | is.na(PostUV_ave)) # 23 students missing either pre or post UV
## # A tibble: 23 x 13
## Gender Age PreUV_all_ave PostUV_all_ave PreInt_Ave PreEff_Ave Int
## <int> <int> <dbl> <dbl> <dbl> <dbl> <int>
## 1 1 10 NA 6.2 4.0 6.2 1
## 2 0 11 7.0 NA 7.0 7.0 1
## 3 0 10 3.6 NA 5.6 3.2 NA
## 4 0 11 3.6 NA 4.4 6.2 1
## 5 0 11 NA 2.4 4.6 4.2 1
## 6 0 11 6.8 NA 6.8 5.4 1
## 7 0 11 6.8 NA 6.4 6.4 1
## 8 1 11 7.0 NA 7.0 6.8 1
## 9 0 10 5.6 NA 6.0 5.4 0
## 10 1 11 6.4 NA 6.8 3.0 NA
## # ... with 13 more rows, and 6 more variables: PreUV_ave <dbl>,
## # PostUV_ave <dbl>, PostInt_Ave <dbl>, PreVal_Ave <dbl>,
## # PostVal_Ave <dbl>, ClassTeacher <fctr>
# VALUE
df %>%
filter(is.na(PreVal_Ave)) # 0 students missing pre val
## # A tibble: 0 x 13
## # ... with 13 variables: Gender <int>, Age <int>, PreUV_all_ave <dbl>,
## # PostUV_all_ave <dbl>, PreInt_Ave <dbl>, PreEff_Ave <dbl>, Int <int>,
## # PreUV_ave <dbl>, PostUV_ave <dbl>, PostInt_Ave <dbl>,
## # PreVal_Ave <dbl>, PostVal_Ave <dbl>, ClassTeacher <fctr>
df %>%
filter(is.na(PostVal_Ave)) # 16 students missing pre val
## # A tibble: 16 x 13
## Gender Age PreUV_all_ave PostUV_all_ave PreInt_Ave PreEff_Ave Int
## <int> <int> <dbl> <dbl> <dbl> <dbl> <int>
## 1 0 11 7.0 NA 7.00 7.0 1
## 2 0 10 3.6 NA 5.60 3.2 NA
## 3 0 11 3.6 NA 4.40 6.2 1
## 4 0 11 6.8 NA 6.40 6.4 1
## 5 1 11 7.0 NA 7.00 6.8 1
## 6 1 11 6.4 NA 6.80 3.0 NA
## 7 1 11 5.2 NA 7.00 5.6 0
## 8 1 10 NA NA 6.75 6.6 NA
## 9 0 10 7.0 NA 7.00 7.0 1
## 10 1 10 6.4 NA 6.60 5.8 1
## 11 0 11 4.8 NA 6.60 5.8 0
## 12 1 10 5.4 NA 6.80 5.6 0
## 13 0 10 5.8 NA 6.40 3.6 1
## 14 1 11 6.4 NA 6.60 5.8 0
## 15 0 10 5.2 NA 5.00 2.8 NA
## 16 0 10 2.8 NA 1.00 3.4 NA
## # ... with 6 more variables: PreUV_ave <dbl>, PostUV_ave <dbl>,
## # PostInt_Ave <dbl>, PreVal_Ave <dbl>, PostVal_Ave <dbl>,
## # ClassTeacher <fctr>
df %>%
filter(is.na(PreVal_Ave) | is.na(PostVal_Ave)) # 16 students missing either pre or post val
## # A tibble: 16 x 13
## Gender Age PreUV_all_ave PostUV_all_ave PreInt_Ave PreEff_Ave Int
## <int> <int> <dbl> <dbl> <dbl> <dbl> <int>
## 1 0 11 7.0 NA 7.00 7.0 1
## 2 0 10 3.6 NA 5.60 3.2 NA
## 3 0 11 3.6 NA 4.40 6.2 1
## 4 0 11 6.8 NA 6.40 6.4 1
## 5 1 11 7.0 NA 7.00 6.8 1
## 6 1 11 6.4 NA 6.80 3.0 NA
## 7 1 11 5.2 NA 7.00 5.6 0
## 8 1 10 NA NA 6.75 6.6 NA
## 9 0 10 7.0 NA 7.00 7.0 1
## 10 1 10 6.4 NA 6.60 5.8 1
## 11 0 11 4.8 NA 6.60 5.8 0
## 12 1 10 5.4 NA 6.80 5.6 0
## 13 0 10 5.8 NA 6.40 3.6 1
## 14 1 11 6.4 NA 6.60 5.8 0
## 15 0 10 5.2 NA 5.00 2.8 NA
## 16 0 10 2.8 NA 1.00 3.4 NA
## # ... with 6 more variables: PreUV_ave <dbl>, PostUV_ave <dbl>,
## # PostInt_Ave <dbl>, PreVal_Ave <dbl>, PostVal_Ave <dbl>,
## # ClassTeacher <fctr>
# INTEREST
df %>%
filter(is.na(PreInt_Ave)) # 0 students missing pre interest
## # A tibble: 0 x 13
## # ... with 13 variables: Gender <int>, Age <int>, PreUV_all_ave <dbl>,
## # PostUV_all_ave <dbl>, PreInt_Ave <dbl>, PreEff_Ave <dbl>, Int <int>,
## # PreUV_ave <dbl>, PostUV_ave <dbl>, PostInt_Ave <dbl>,
## # PreVal_Ave <dbl>, PostVal_Ave <dbl>, ClassTeacher <fctr>
df %>%
filter(is.na(PostInt_Ave)) # 16 students missing pre int
## # A tibble: 16 x 13
## Gender Age PreUV_all_ave PostUV_all_ave PreInt_Ave PreEff_Ave Int
## <int> <int> <dbl> <dbl> <dbl> <dbl> <int>
## 1 0 11 7.0 NA 7.00 7.0 1
## 2 0 10 3.6 NA 5.60 3.2 NA
## 3 0 11 3.6 NA 4.40 6.2 1
## 4 0 11 6.8 NA 6.40 6.4 1
## 5 1 11 7.0 NA 7.00 6.8 1
## 6 1 11 6.4 NA 6.80 3.0 NA
## 7 1 11 5.2 NA 7.00 5.6 0
## 8 1 10 NA NA 6.75 6.6 NA
## 9 0 10 7.0 NA 7.00 7.0 1
## 10 1 10 6.4 NA 6.60 5.8 1
## 11 0 11 4.8 NA 6.60 5.8 0
## 12 1 10 5.4 NA 6.80 5.6 0
## 13 0 10 5.8 NA 6.40 3.6 1
## 14 1 11 6.4 NA 6.60 5.8 0
## 15 0 10 5.2 NA 5.00 2.8 NA
## 16 0 10 2.8 NA 1.00 3.4 NA
## # ... with 6 more variables: PreUV_ave <dbl>, PostUV_ave <dbl>,
## # PostInt_Ave <dbl>, PreVal_Ave <dbl>, PostVal_Ave <dbl>,
## # ClassTeacher <fctr>
df %>%
filter(is.na(PreInt_Ave) | is.na(PostInt_Ave)) # 16 students missing either pre or post int
## # A tibble: 16 x 13
## Gender Age PreUV_all_ave PostUV_all_ave PreInt_Ave PreEff_Ave Int
## <int> <int> <dbl> <dbl> <dbl> <dbl> <int>
## 1 0 11 7.0 NA 7.00 7.0 1
## 2 0 10 3.6 NA 5.60 3.2 NA
## 3 0 11 3.6 NA 4.40 6.2 1
## 4 0 11 6.8 NA 6.40 6.4 1
## 5 1 11 7.0 NA 7.00 6.8 1
## 6 1 11 6.4 NA 6.80 3.0 NA
## 7 1 11 5.2 NA 7.00 5.6 0
## 8 1 10 NA NA 6.75 6.6 NA
## 9 0 10 7.0 NA 7.00 7.0 1
## 10 1 10 6.4 NA 6.60 5.8 1
## 11 0 11 4.8 NA 6.60 5.8 0
## 12 1 10 5.4 NA 6.80 5.6 0
## 13 0 10 5.8 NA 6.40 3.6 1
## 14 1 11 6.4 NA 6.60 5.8 0
## 15 0 10 5.2 NA 5.00 2.8 NA
## 16 0 10 2.8 NA 1.00 3.4 NA
## # ... with 6 more variables: PreUV_ave <dbl>, PostUV_ave <dbl>,
## # PostInt_Ave <dbl>, PreVal_Ave <dbl>, PostVal_Ave <dbl>,
## # ClassTeacher <fctr>
# SELF-EFFICACY
df %>%
filter(is.na(PreEff_Ave)) # 0 students missing pre eff ave
## # A tibble: 0 x 13
## # ... with 13 variables: Gender <int>, Age <int>, PreUV_all_ave <dbl>,
## # PostUV_all_ave <dbl>, PreInt_Ave <dbl>, PreEff_Ave <dbl>, Int <int>,
## # PreUV_ave <dbl>, PostUV_ave <dbl>, PostInt_Ave <dbl>,
## # PreVal_Ave <dbl>, PostVal_Ave <dbl>, ClassTeacher <fctr>
# GENDER
df %>%
filter(is.na(Gender)) # 0 missing
## # A tibble: 0 x 13
## # ... with 13 variables: Gender <int>, Age <int>, PreUV_all_ave <dbl>,
## # PostUV_all_ave <dbl>, PreInt_Ave <dbl>, PreEff_Ave <dbl>, Int <int>,
## # PreUV_ave <dbl>, PostUV_ave <dbl>, PostInt_Ave <dbl>,
## # PreVal_Ave <dbl>, PostVal_Ave <dbl>, ClassTeacher <fctr>
df %>%
filter(is.na(ClassTeacher)) # 0 missing
## # A tibble: 0 x 13
## # ... with 13 variables: Gender <int>, Age <int>, PreUV_all_ave <dbl>,
## # PostUV_all_ave <dbl>, PreInt_Ave <dbl>, PreEff_Ave <dbl>, Int <int>,
## # PreUV_ave <dbl>, PostUV_ave <dbl>, PostInt_Ave <dbl>,
## # PreVal_Ave <dbl>, PostVal_Ave <dbl>, ClassTeacher <fctr>