## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

Spelling task.

library(gplots)
## 
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
## 
##     lowess
a$msg.day<-as.numeric(a$msg.day)

summary(lm(spellingscore ~ cond + OS + a$own.cellphone + cell.freq+cell.keyboard + texts.per.day + use.twitter + msg.apps + msg.day + attn.check, a))
## 
## Call:
## lm(formula = spellingscore ~ cond + OS + a$own.cellphone + cell.freq + 
##     cell.keyboard + texts.per.day + use.twitter + msg.apps + 
##     msg.day + attn.check, data = a)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.5055 -0.8466  0.3407  1.1709  2.5588 
## 
## Coefficients: (1 not defined because of singularities)
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      7.538258   0.904430   8.335 2.39e-15 ***
## condblog         0.038595   0.278419   0.139   0.8898    
## condtext         0.064110   0.234600   0.273   0.7848    
## condtwitter      0.491830   0.246212   1.998   0.0466 *  
## OSphone         -0.295914   0.310923  -0.952   0.3420    
## a$own.cellphone        NA         NA      NA       NA    
## cell.freq       -0.151347   0.083288  -1.817   0.0701 .  
## cell.keyboard    0.396305   0.244434   1.621   0.1059    
## texts.per.day   -0.001563   0.001620  -0.965   0.3352    
## use.twitter     -0.408127   0.186630  -2.187   0.0295 *  
## msg.apps         0.246384   0.271112   0.909   0.3642    
## msg.day          0.002421   0.006687   0.362   0.7175    
## attn.check       0.092212   0.064194   1.436   0.1519    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.629 on 317 degrees of freedom
##   (2349 observations deleted due to missingness)
## Multiple R-squared:  0.06048,    Adjusted R-squared:  0.02788 
## F-statistic: 1.855 on 11 and 317 DF,  p-value: 0.04458
m1<-aov(spellingscore ~ cond, data=a)
summary(m1)
##              Df Sum Sq Mean Sq F value Pr(>F)
## cond          3   14.5   4.827   1.631  0.182
## Residuals   356 1053.8   2.960               
## 2318 observations deleted due to missingness
plotmeans(a$spellingscore~a$cond)

TukeyHSD(m1)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = spellingscore ~ cond, data = a)
## 
## $cond
##                         diff        lwr       upr     p adj
## blog-acontrol     0.16592986 -0.5472276 0.8790873 0.9318349
## text-acontrol     0.10927961 -0.4988366 0.7173959 0.9668619
## twitter-acontrol  0.52225169 -0.1064373 1.1509407 0.1412698
## text-blog        -0.05665025 -0.7923636 0.6790631 0.9972159
## twitter-blog      0.35632184 -0.3964853 1.1091290 0.6134288
## twitter-text      0.41297209 -0.2411918 1.0671360 0.3633209

Sentence completion task.

summary(lm(sentencescore ~ cond + OS + a$own.cellphone + cell.freq+cell.keyboard + texts.per.day + use.twitter + msg.apps + msg.day + attn.check, a))
## 
## Call:
## lm(formula = sentencescore ~ cond + OS + a$own.cellphone + cell.freq + 
##     cell.keyboard + texts.per.day + use.twitter + msg.apps + 
##     msg.day + attn.check, data = a)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1711 -1.6341 -0.2961  1.4107  5.0629 
## 
## Coefficients: (1 not defined because of singularities)
##                  Estimate Std. Error t value Pr(>|t|)   
## (Intercept)      4.063306   1.552917   2.617  0.00933 **
## condblog         0.413019   0.359963   1.147  0.25213   
## condtext         0.319326   0.329496   0.969  0.33326   
## condtwitter     -0.001620   0.348219  -0.005  0.99629   
## OSphone         -0.089952   0.415782  -0.216  0.82887   
## a$own.cellphone        NA         NA      NA       NA   
## cell.freq        0.001346   0.108667   0.012  0.99012   
## cell.keyboard    0.348906   0.323726   1.078  0.28199   
## texts.per.day   -0.007390   0.002839  -2.603  0.00970 **
## use.twitter     -0.138261   0.248827  -0.556  0.57886   
## msg.apps        -0.619701   0.364173  -1.702  0.08985 . 
## msg.day         -0.015563   0.009830  -1.583  0.11441   
## attn.check       0.071573   0.157578   0.454  0.65001   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.16 on 301 degrees of freedom
##   (2365 observations deleted due to missingness)
## Multiple R-squared:  0.04882,    Adjusted R-squared:  0.01406 
## F-statistic: 1.404 on 11 and 301 DF,  p-value: 0.1697
m2<-aov(a$sentencescore ~ cond, data=a)

summary(m2)
##              Df Sum Sq Mean Sq F value Pr(>F)
## cond          3     14   4.677   0.968  0.408
## Residuals   337   1629   4.834               
## 2337 observations deleted due to missingness
plotmeans(a$sentencescore~a$cond)

TukeyHSD(m2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = a$sentencescore ~ cond, data = a)
## 
## $cond
##                        diff        lwr       upr     p adj
## blog-acontrol     0.5443769 -0.3518585 1.4406123 0.3982204
## text-acontrol     0.3517502 -0.4785374 1.1820377 0.6935685
## twitter-acontrol  0.1324721 -0.7198810 0.9848253 0.9781062
## text-blog        -0.1926267 -1.0909165 0.7056630 0.9455163
## twitter-blog     -0.4119048 -1.3306283 0.5068188 0.6540214
## twitter-text     -0.2192780 -1.0737910 0.6352349 0.9110562

Paragraph comprehension task.

summary(lm(Parscore ~ cond + OS + a$own.cellphone + cell.freq+cell.keyboard + texts.per.day + use.twitter + msg.apps + msg.day + attn.check, a))
## 
## Call:
## lm(formula = Parscore ~ cond + OS + a$own.cellphone + cell.freq + 
##     cell.keyboard + texts.per.day + use.twitter + msg.apps + 
##     msg.day + attn.check, data = a)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6034 -1.1332 -0.1360  0.9785  4.6698 
## 
## Coefficients: (1 not defined because of singularities)
##                   Estimate Std. Error t value Pr(>|t|)  
## (Intercept)      1.6443356  1.3238618   1.242   0.2153  
## condblog        -0.7381103  0.3174562  -2.325   0.0208 *
## condtext        -0.4862757  0.2810802  -1.730   0.0848 .
## condtwitter     -0.4509622  0.2718701  -1.659   0.0983 .
## OSphone         -0.8080267  0.3687569  -2.191   0.0293 *
## a$own.cellphone         NA         NA      NA       NA  
## cell.freq        0.1168459  0.0925633   1.262   0.2079  
## cell.keyboard    0.3270605  0.2895445   1.130   0.2596  
## texts.per.day   -0.0029957  0.0018407  -1.628   0.1048  
## use.twitter      0.2854635  0.2062839   1.384   0.1675  
## msg.apps         0.2095344  0.3182134   0.658   0.5108  
## msg.day         -0.0009114  0.0077927  -0.117   0.9070  
## attn.check       0.0898036  0.1220665   0.736   0.4625  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.661 on 273 degrees of freedom
##   (2393 observations deleted due to missingness)
## Multiple R-squared:  0.08846,    Adjusted R-squared:  0.05174 
## F-statistic: 2.409 on 11 and 273 DF,  p-value: 0.007195
m3<-aov(a$Parscore ~ cond, data=a)
summary(lm(a$Parscore ~ cond, data=a))
## 
## Call:
## lm(formula = a$Parscore ~ cond, data = a)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4412 -1.2805 -0.0377  0.9623  4.7195 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.8986     0.2062  18.908  < 2e-16 ***
## condblog     -0.8608     0.3128  -2.752  0.00629 ** 
## condtext     -0.6181     0.2798  -2.209  0.02793 *  
## condtwitter  -0.4574     0.2670  -1.713  0.08770 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.713 on 302 degrees of freedom
##   (2372 observations deleted due to missingness)
## Multiple R-squared:  0.0276, Adjusted R-squared:  0.01794 
## F-statistic: 2.858 on 3 and 302 DF,  p-value: 0.03728
summary(m3)
##              Df Sum Sq Mean Sq F value Pr(>F)  
## cond          3   25.1   8.383   2.858 0.0373 *
## Residuals   302  885.9   2.933                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 2372 observations deleted due to missingness
plotmeans(a$Parscore~a$cond)

TukeyHSD(m3)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = a$Parscore ~ cond, data = a)
## 
## $cond
##                        diff        lwr         upr     p adj
## blog-acontrol    -0.8608149 -1.6689782 -0.05265154 0.0317597
## text-acontrol    -0.6180629 -1.3408971  0.10477131 0.1231115
## twitter-acontrol -0.4573743 -1.1470662  0.23231766 0.3185683
## text-blog         0.2427520 -0.5370849  1.02258877 0.8524445
## twitter-blog      0.4034406 -0.3457797  1.15266092 0.5058893
## twitter-text      0.1606887 -0.4955829  0.81696026 0.9214844

Analogy Task.

summary(lm(Analogyscore ~ cond + OS + a$own.cellphone + cell.freq+cell.keyboard + texts.per.day + use.twitter + msg.apps + msg.day + attn.check, a))
## 
## Call:
## lm(formula = Analogyscore ~ cond + OS + a$own.cellphone + cell.freq + 
##     cell.keyboard + texts.per.day + use.twitter + msg.apps + 
##     msg.day + attn.check, data = a)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.8132 -1.3907 -0.2791  1.0158  5.9329 
## 
## Coefficients: (1 not defined because of singularities)
##                   Estimate Std. Error t value Pr(>|t|)   
## (Intercept)      2.7602284  0.9609733   2.872  0.00435 **
## condblog        -0.1067808  0.3123822  -0.342  0.73271   
## condtext         0.2516285  0.2668414   0.943  0.34642   
## condtwitter      0.0951572  0.2829906   0.336  0.73690   
## OSphone         -0.4008092  0.3856550  -1.039  0.29947   
## a$own.cellphone         NA         NA      NA       NA   
## cell.freq        0.0180723  0.0890037   0.203  0.83923   
## cell.keyboard    0.1735767  0.2816876   0.616  0.53821   
## texts.per.day   -0.0007655  0.0014158  -0.541  0.58910   
## use.twitter     -0.0578569  0.2099616  -0.276  0.78307   
## msg.apps         0.0326027  0.3019718   0.108  0.91409   
## msg.day         -0.0032804  0.0077088  -0.426  0.67074   
## attn.check       0.0549604  0.0845974   0.650  0.51639   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.8 on 311 degrees of freedom
##   (2355 observations deleted due to missingness)
## Multiple R-squared:  0.01483,    Adjusted R-squared:  -0.02001 
## F-statistic: 0.4256 on 11 and 311 DF,  p-value: 0.9442
m4<-aov(a$Analogyscore ~ cond, data=a)
summary(m4)
##              Df Sum Sq Mean Sq F value Pr(>F)
## cond          3    7.1   2.361   0.724  0.538
## Residuals   347 1130.9   3.259               
## 2327 observations deleted due to missingness
plotmeans(a$Analogyscore~a$cond)

TukeyHSD(m4)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = a$Analogyscore ~ cond, data = a)
## 
## $cond
##                         diff        lwr       upr     p adj
## blog-acontrol    -0.02424242 -0.8123574 0.7638726 0.9998202
## text-acontrol     0.27414330 -0.3810035 0.9292901 0.7018521
## twitter-acontrol -0.06451613 -0.7425820 0.6135498 0.9947860
## text-blog         0.29838573 -0.4748330 1.0716044 0.7516721
## twitter-blog     -0.04027370 -0.8330052 0.7524578 0.9991933
## twitter-text     -0.33865943 -0.9993525 0.3220336 0.5487238

Math Task.

summary(lm(math ~ cond + OS + a$own.cellphone + cell.freq+cell.keyboard + texts.per.day + use.twitter + msg.apps + msg.day + attn.check, a))
## 
## Call:
## lm(formula = math ~ cond + OS + a$own.cellphone + cell.freq + 
##     cell.keyboard + texts.per.day + use.twitter + msg.apps + 
##     msg.day + attn.check, data = a)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1042 -1.5444 -0.0417  1.2266  5.1176 
## 
## Coefficients: (1 not defined because of singularities)
##                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)      1.0781140  1.5218196   0.708    0.479
## condblog         0.0606240  0.3533244   0.172    0.864
## condtext        -0.0227284  0.3050734  -0.075    0.941
## condtwitter     -0.2884066  0.3092722  -0.933    0.352
## OSphone         -0.1854774  0.4083263  -0.454    0.650
## a$own.cellphone         NA         NA      NA       NA
## cell.freq        0.0286320  0.0980985   0.292    0.771
## cell.keyboard    0.2050974  0.3074191   0.667    0.505
## texts.per.day    0.0017316  0.0029108   0.595    0.552
## use.twitter      0.1206589  0.2288022   0.527    0.598
## msg.apps         0.3874785  0.3372841   1.149    0.252
## msg.day         -0.0002972  0.0091529  -0.032    0.974
## attn.check       0.1979282  0.1632916   1.212    0.226
## 
## Residual standard error: 1.934 on 287 degrees of freedom
##   (2379 observations deleted due to missingness)
## Multiple R-squared:  0.02375,    Adjusted R-squared:  -0.01367 
## F-statistic: 0.6347 on 11 and 287 DF,  p-value: 0.7986
m5<-aov(math ~ cond, data=a)

summary(m5)
##              Df Sum Sq Mean Sq F value Pr(>F)
## cond          3      6   1.990   0.543  0.653
## Residuals   331   1214   3.666               
## 2343 observations deleted due to missingness
plotmeans(a$math~a$cond)

TukeyHSD(m5)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = math ~ cond, data = a)
## 
## $cond
##                         diff        lwr       upr     p adj
## blog-acontrol     0.14019608 -0.6934392 0.9738314 0.9725364
## text-acontrol     0.03405573 -0.7040901 0.7722015 0.9993946
## twitter-acontrol -0.22910217 -0.9672480 0.5090436 0.8537244
## text-blog        -0.10614035 -0.9214181 0.7091374 0.9868942
## twitter-blog     -0.36929825 -1.1845760 0.4459795 0.6464535
## twitter-text     -0.26315789 -0.9805067 0.4541909 0.7793216