#Adult population in 10 yrs
N1<-46
N2<-46
N3<-40
N4<-51
N5<-52
N6<-32
N7<-46
N8<-49
N9<-35
N10<-36
#Computing finite rate ofincrease
L1<-N2/N1
L2<-N3/N2
L3<-N4/N3
L4<-N5/N3
L5<-N6/N5
L6<-N7/N6
L7<-N8/N7
L8<-N9/N8
L9<-N10/N9
L<-(L1+L2+L3+L4+L5+L6+L7+L8+L9)/9
L
## [1] 1.033947
rd<-L-1
rd
## [1] 0.03394715
#population growth rate
g<-c(L1,L2,L3,L4,L5,L6,L7,L8,L9)
g
## [1] 1.0000000 0.8695652 1.2750000 1.3000000 0.6153846 1.4375000 1.0652174
## [8] 0.7142857 1.0285714
rt<-log(g)
rt
## [1] 0.00000000 -0.13976194 0.24294618 0.26236426 -0.48550782 0.36290549
## [7] 0.06317890 -0.33647224 0.02817088
L
## [1] 1.033947
#Note that the growth rates(rt) do no flunctaute around the average value (L). Could we say the growth is density dependent?
#Carrying capacity
N<-c(46,46,40,51,52,32,46,49,35,36)
k<-((rd*N)/(rd-rt))
## Warning in (rd * N)/(rd - rt): longer object length is not a multiple of
## shorter object length
k
## [1] 46.000000 8.989564 -6.497093 -7.579575 3.398277 -3.302269
## [7] -53.420305 4.490614 205.694904 36.000000
matplot(N,k,type="l",col=1)

#The population seems regulatory.