Section 2.1
2 Number, Percentage
3 1
5
washing your hands, 61%
Drinking orange juice, 2%
25%
13
datt <- c(125, 324, 552, 1257, 2518)
rel.freqq <- datt/sum(datt)
categoriess <- c("Never", "Rarely", "Sometimes", "Most of time", "Always")
answerr <- data.frame(categoriess,rel.freqq)
answerr
## categoriess rel.freqq
## 1 Never 0.02617253
## 2 Rarely 0.06783920
## 3 Sometimes 0.11557789
## 4 Most of time 0.26319095
## 5 Always 0.52721943
52.7%
9.4%
barplot(datt,main="Seat Belt Usage",names=categoriess, col =c("red","blue","green","yellow","orange"))
barplot(rel.freqq,main="Seat Belt Usage",names=categoriess, col =c("red","blue","green","yellow","orange"))
pie(datt,main="Seat Belt Usage",labels=categoriess, col =c("red","blue","green","yellow","orange"))
15
dat <- c(377,192,132,81,243)
rel.freq <- dat/sum(dat)
categories <- c("More 1", "Up to 1", "Few a week", "Few a month", "Never")
answer <- data.frame(categories,rel.freq)
answer
## categories rel.freq
## 1 More 1 0.36780488
## 2 Up to 1 0.18731707
## 3 Few a week 0.12878049
## 4 Few a month 0.07902439
## 5 Never 0.23707317
0.237, about 24%
barplot(dat,main="Internet Usage",names=categories, col =c("red","blue","green","yellow","orange"))
barplot(rel.freq,main="Internet Usage(Relative Freq)",names=categories, col =c("red","blue","green","yellow","orange"))
pie(dat,main="Internet Usage",labels=categories, col =c("red","blue","green","yellow","orange"))
Section 2.2
7 false
8 true
9
8
2
15 times
4 more
15% of the time
Left Skewed
10
4
9 weeks
17 %
Right Skewed
13
Right Skewed, there will be fewer higher incomes, and more lower ones.
Bell Shaped, most scores will occur somewhere in the middle.
Right Skewed, Most people live in a house with under 5 people in it.
Left Skewed, most Alzheimer’s patients are in the older range.
14
Right Skewed, Most people probably drink less than 4 times a week.
Uniform, presumably there are around the same number of kids in each grade.
Left skewed, most hearing aid patients are older.
Bell Shaper, most are probably in the mid-range, with some taller and some shorter.
15
dattt <- c(16, 18, 12, 3, 1)
rel.freqqq <- dattt/sum(dattt)
categoriesss <- c("Zero", "One", "Two", "Three", "Four")
answerrr <- data.frame(categoriesss,rel.freqqq)
answerrr
## categoriesss rel.freqqq
## 1 Zero 0.32
## 2 One 0.36
## 3 Two 0.24
## 4 Three 0.06
## 5 Four 0.02
24%
60%
16
free_throws <- c(16, 11, 9, 7, 2,3,0,1,0,1)
rel.freqqq <- free_throws/sum(free_throws)
categoriesss <- c("1", "2", "3", "4","5","6","7","8","9","10")
answerrr <- data.frame(categoriesss,rel.freqqq)
answerrr
## categoriesss rel.freqqq
## 1 1 0.32
## 2 2 0.22
## 3 3 0.18
## 4 4 0.14
## 5 5 0.04
## 6 6 0.06
## 7 7 0.00
## 8 8 0.02
## 9 9 0.00
## 10 10 0.02
14%
2%
14%
25
Discrete
tv <- c(1, 1, 1, 2, 1,
1, 2, 2, 3, 2,
4, 2, 2, 2, 2,
2, 4, 1, 2, 2,
3, 1, 3, 1, 2,
3, 1, 1, 2, 1,
5, 0 ,1, 3, 3,
1, 3, 3, 2, 1)
#table(tv)
tv <- c(1,14,14,8,2,1)
tv.freq <- tv/sum(tv)
tv.cat <- c("0", "1", "2", "3","4","5")
freq.tab <- data.frame(tv.cat,tv)
rfreq.tab <- data.frame(tv.cat,tv.freq)
freq.tab
## tv.cat tv
## 1 0 1
## 2 1 14
## 3 2 14
## 4 3 8
## 5 4 2
## 6 5 1
rfreq.tab
## tv.cat tv.freq
## 1 0 0.025
## 2 1 0.350
## 3 2 0.350
## 4 3 0.200
## 5 4 0.050
## 6 5 0.025
20%
7.5%