Section 2.1
2 type answer here number, proportion 3 type answer here The relative frequencies should add up to 1 5
13
datt <- c(125, 324, 552, 1257, 2518)
rel.freqq <- datt/sum(datt)
categoriess <- c("Never", "Rarely", "Sometimes", "Most of time", "Always")
answerr <- data.frame(categoriess,rel.freqq)
answerr
## categoriess rel.freqq
## 1 Never 0.02617253
## 2 Rarely 0.06783920
## 3 Sometimes 0.11557789
## 4 Most of time 0.26319095
## 5 Always 0.52721943
barplot(datt,main="Seat Belt Usage",names=categoriess, col =c("red","blue","green","yellow","orange"))
barplot(rel.freqq,main="Seat Belt Usage",names=categoriess, col =c("red","blue","green","yellow","orange"))
pie(datt,main="Seat Belt Usage",labels=categoriess, col =c("red","blue","green","yellow","orange"))
15
dat <- c(377,192,132,81,243)
rel.freq <- dat/sum(dat)
categories <- c("More 1", "Up to 1", "Few a week", "Few a month", "Never")
answer <- data.frame(categories,rel.freq)
answer
## categories rel.freq
## 1 More 1 0.36780488
## 2 Up to 1 0.18731707
## 3 Few a week 0.12878049
## 4 Few a month 0.07902439
## 5 Never 0.23707317
barplot(dat,main="Internet Usage",names=categories, col =c("red","blue","green","yellow","orange"))
barplot(rel.freq,main="Internet Usage(Relative Freq)",names=categories, col =c("red","blue","green","yellow","orange"))
pie(dat,main="Internet Usage",labels=categories, col =c("red","blue","green","yellow","orange"))
Section 2.2
7 type answer here False. The shape of the distribution is skewed right. 8 type answer here True. 9 type answer here
10
type answer here. Skewed right 13
type answer here. Most likely skewed left. The younger population would be less likely to get Alzheimer’s disease.
14
15
dattt <- c(16, 18, 12, 3, 1)
rel.freqqq <- dattt/sum(dattt)
categoriesss <- c("Zero", "One", "Two", "Three", "Four")
answerrr <- data.frame(categoriesss,rel.freqqq)
answerrr
## categoriesss rel.freqqq
## 1 Zero 0.32
## 2 One 0.36
## 3 Two 0.24
## 4 Three 0.06
## 5 Four 0.02
16
free_throws <- c(16, 11, 9, 7, 2,3,0,1,0,1)
rel.freqqq <- free_throws/sum(free_throws)
categoriesss <- c("1", "2", "3", "4","5","6","7","8","9","10")
answerrr <- data.frame(categoriesss,rel.freqqq)
answerrr
## categoriesss rel.freqqq
## 1 1 0.32
## 2 2 0.22
## 3 3 0.18
## 4 4 0.14
## 5 5 0.04
## 6 6 0.06
## 7 7 0.00
## 8 8 0.02
## 9 9 0.00
## 10 10 0.02
25
tv <- c(1, 1, 1, 2, 1,
1, 2, 2, 3, 2,
4, 2, 2, 2, 2,
2, 4, 1, 2, 2,
3, 1, 3, 1, 2,
3, 1, 1, 2, 1,
5, 0 ,1, 3, 3,
1, 3, 3, 2, 1)
#table(tv)
tv <- c(1,14,14,8,2,1)
tv.freq <- tv/sum(tv)
tv.cat <- c("0", "1", "2", "3","4","5")
freq.tab <- data.frame(tv.cat,tv)
rfreq.tab <- data.frame(tv.cat,tv.freq)
freq.tab
## tv.cat tv
## 1 0 1
## 2 1 14
## 3 2 14
## 4 3 8
## 5 4 2
## 6 5 1
rfreq.tab
## tv.cat tv.freq
## 1 0 0.025
## 2 1 0.350
## 3 2 0.350
## 4 3 0.200
## 5 4 0.050
## 6 5 0.025