IT100 Session 4: Algebra Review and Functions
20 Sept 2017 presented by Dr Bob Batzinger
\[ \huge\begin{array}{rcl} (x+a)(x+b) &=& x^2 + (a+b)x + ab\\ (x+a)(x+a) &=& x^2 + 2a + a^2\\ (x+a)(x-a) &=& x^2 - a^2\\ (ax+b)(cx+d)&=& ac x^2 + (ad+bc)x + bd\\ \end{array} \]
\[ \huge\begin{array}{rcl} x + 3 & = & 5 \\ x = x + 3 -(3) & = & 5 - (3) = 2 \\ & & \\ x + 7 & = & 2x + 3 \\ 7 = x + 7 - (x) & = & 2x + 3 - (x) = x + 3\\ 4 = 7 - (3) & = & x + 3 - (3) = x \\ \end{array} \]
\[ \huge\begin{array}{rcl} 2 x & = & 16\\ {2x \over (2)} & = & {16 \over (2)}\\ x & = & 8 \\ \end{array} \]
\[ \huge\begin{array}{rcl} {3\over x} &= & 36\\ 1 = {3(x)\over (3)x} &= & {36(x) \over (3)} = 12x\\ {1\over 12} = {1\over (12)} &=& {12x\over (12)} = x\\ \end{array} \]
\[ \huge\begin{array}{c} \left({10h^2 - 9h - 9\over 2h^2 - 19h + 24}\right)\left({h^2 - 16h + 64\over 5h^2 - 37h - 24}\right)\\ {(5h+3)(2h-3)(h-8)(h-8)\over (2h-3)(h-8)(5h+3)(h-8)}\\ {(5h+3)(2h-3)(h-8)(h-8)\over (5h+3)(2h-3)(h-8)(h-8)}\\ 1\\ \end{array} \]
\[ \huge\begin{array}{c} \left({x^2 - x - 6\over x^2 + x - 6}\right) \left({x^2 + 8x + 15\over x^2 - 9}\right)\\ {(x-3)(x+2)(x+3)(x+5)\over (x+3)(x-2)(x+3)(x-3)}\\ {(x+2)(x+5)\over (x-2)(x+3)}= {x^2 +7x + 10\over x^2 + x - 6}\\ \end{array} \]
Simplify the following:
\[ \huge\begin{array}{c}
\left({y^2 + 10y + 25\over y^2 + 11y + 30}\right)\\
& & \\
\left({2x^2 + 7x - 4\over
4x^2 + 2x - 2}\right)\\
& & \\
\left({c^2 + 2c - 24\over c^2 + 12c + 36}\right)\left({c^2 - 10c + 24\over c^2 - 8c + 16}\right)\\
\end{array}
\]
from Arabic “al-jabr”
meaning “reunion of broken parts”
a systematic application of the basic rules to simplify and solve equations
\[ \huge\begin{array}{rcl} 3x - 2y = 57; & & x + y = 44\\ & & \\ 2x + 2y=(2)(x + y) &=& (2)\times 44 = 88\\ & & \\ 5x = (3x-2y)+ 2x +2y &= & 57 + 88 = 145\\ x=5x/5&=&145 /5 = 29\\ & & \\ 29 + y &=& 44\\ y =29 + y -(29) & = & 44- (29)= 15\\ \end{array} \]
\[ \huge\begin{array}{rcl} 8x - 3y = 8; & & x + 2y = 20\\ & & \\ 8x +16y = 8(x + 2y) &=& 8\times 20=160\\ 19y = 8x +16y -(8x - 3y) &=& 160 - 8 = 152\\ y = 19y/19 & = & 155/19 = 8\\ & & \\ x + 16 =x +2 \times 8 &= & 20\\ x = x + 16 - (16) &=& 20 -(16) = 4\\ \end{array} \]
\[ \huge\begin{array}{rcl} 3x + 7 & = & 5x - 3\\ & & \\ {-2 \over (3x+5)} & = & 6x - 4\\ & & \\ {2x + 7\over x - 2} &=& 27\\ & & \\ 2x+5& = & 6y -15\\ x+8& = & y + 6\\ \end{array} \]
\[ \huge\begin{eqnarray} Input & \rightarrow & \hbox{Function} & \rightarrow & Output\\ x\qquad & & f(x) & & {}\qquad y\\ \hbox{domain} & & y = {x \over 5} & & \hbox{range}\\ \large [0, 1, 2 ... n] & & & & \large [0, 0.2, 0.4 ... n/5] \\ \end{eqnarray} \]
Circle
\( \huge 25= x^2 + y^2 \)
Ellipse
\( \huge 25 = 2x^2+ 5y^2 \)
\( \huge 25= x^2 y^2 \)
\( \huge 25=\left(x+1\right) \left(x-5\right) \left(y-1\right) \left(y+4\right) \)
\( \huge 25 = \frac{x^2}{0.5} + \frac{5y^2}{1-0.1x} \)
\( \huge\left(x^2+y^2-2ax\right)^2 = 4a^2\left(x^2+y^2\right) \)
\( \huge\left(x^2+y^2\right)^3 = 4x^2y^2 \)
Determine why these are considered non-functions in this form?
Is there a domain or mathematical transform that would make any of these a function?
Answer the questions on pg 20: Numbers 52-69
Give answers for Applied Exercises on pg 21: Numbers 88-90
\[ \huge\begin{eqnarray} Input & \rightarrow & \hbox{Function} & \rightarrow & Output\\ x\qquad & & f(x) & & {}\qquad y\\ & & & & \\ Output & \rightarrow & \hbox{Inverse Function} & \rightarrow & Input\\ y\qquad & & f\prime(y) & & {}\qquad x\\ \end{eqnarray} \]
Input \( \huge(x) \) | Function | Output \( \huge (y) \) | Inverse Function | Reverted \( \huge (x_2) \) | Does \( \huge x = x_2 \) ? |
---|---|---|---|---|---|
\( \Large [-5,-2,0,2,5] \) | \( \huge y = 3x \) | \( \Large [-15,-6,0,6,15] \) | \( \huge x_2 = y / 3 \) | \( \Large [-5,-2,0,2,5] \) | True |
\( \Large [-5,-2,0,2,5] \) | \( \huge y = x^2 \) | \( \Large [25,4,0,4,25] \) | \( \huge x_2 = \sqrt{y} \) | ||
\( \Large [-5,-2,0,2,5] \) | \( \huge y = 3x + 4 \) | \( \Large [-11,-2,4,10,19] \) | |||
\( \Large [-5,-2,0,2,5] \) | \( \huge y = 1/x \) | ||||
\( \Large [-5,-2,0,2,5] \) | \( \huge y = |x|/x \) |
type: section
Transform | Formula | Parabola | Line | Normal Curve |
---|---|---|---|---|
(N) None | \( \huge y = f(x) \) | \( \huge y = x^2 \) | \( \huge y = 2x \) | \( \Huge y = {1\over \sigma\sqrt{2\pi}} e^{-{(x-\mu)^2\over 2 \sigma^2)}} \) |
(A) Horizontal | \( \huge y = f(x+A) \) | \( \huge y = (x+A)^2 \) | \( \huge y = 2(x + A) \) | \( \Huge y = {1\over \sigma\sqrt{2\pi}} e^{-{(x+A-\mu)^2\over 2 \sigma^2)}} \) |
(B) Vertical | \( \huge y = f(x) + B \) | \( \huge y = x^2 + B \) | \( \huge y = 2x + B \) | \( \Huge y = B+ {1\over \sigma\sqrt{2\pi}} e^{-{(x-\mu)^2\over 2 \sigma^2)}} \) |
© Amplitude | \( \huge y = C\times f(x) \) | \( \huge y = C x^2 \) | \( \huge y = C(2x) \) | \( \Huge y = {C\over \sigma\sqrt{2\pi}} e^{-{(x-\mu)^2\over 2 \sigma^2)}} \) |
Compare the graph of \( \huge f(x+A) \) to that of \( \huge f(x) \)
Compare the graph of \( \huge f(x) + B \) to that of \( \huge f(x) \)
Compare the graph of \( \huge f(x)\times C \) to that of \( \huge f(x) \)
Properties of Linear functions
Read Precalculus Chapter 2