Section 2.1

2 Number

3 1

5

  1. Washing your hands

  2. Drinking orange juice, 2%

  3. 25%

13

datt <- c(125, 324, 552, 1257, 2518)

rel.freqq <- datt/sum(datt)

categoriess <- c("Never", "Rarely", "Sometimes", "Most of time", "Always")


answerr <- data.frame(categoriess,rel.freqq)

answerr
##    categoriess  rel.freqq
## 1        Never 0.02617253
## 2       Rarely 0.06783920
## 3    Sometimes 0.11557789
## 4 Most of time 0.26319095
## 5       Always 0.52721943
  1. 52.7%

  2. 9.4%

barplot(datt,main="Seat Belt Usage",names=categoriess, col =c("red","blue","green","yellow","orange"))

barplot(rel.freqq,main="Seat Belt Usage",names=categoriess, col =c("red","blue","green","yellow","orange"))

pie(datt,main="Seat Belt Usage",labels=categoriess, col =c("red","blue","green","yellow","orange"))

  1. Descriptive

15

dat <- c(377,192,132,81,243)

rel.freq <- dat/sum(dat)

categories <- c("More 1", "Up to 1", "Few a week", "Few a month", "Never")


answer <- data.frame(categories,rel.freq)

answer
##    categories   rel.freq
## 1      More 1 0.36780488
## 2     Up to 1 0.18731707
## 3  Few a week 0.12878049
## 4 Few a month 0.07902439
## 5       Never 0.23707317
  1. 23.7%

barplot(dat,main="Internet Usage",names=categories, col =c("red","blue","green","yellow","orange"))

barplot(rel.freq,main="Internet Usage(Relative Freq)",names=categories, col =c("red","blue","green","yellow","orange"))

pie(dat,main="Internet Usage",labels=categories, col =c("red","blue","green","yellow","orange"))

Section 2.2

7 False

8 False

9

  1. 8

  2. 2

  3. 15

  4. 4

  5. 15.8%

  6. For the most part it is bell shaped.

10

  1. 4

  2. 9

  3. 17.3%

  4. Skewed to the right 13

  5. Bell Shaped, One could see families in lower, middle, and upper class families as their incomes demonstrates

  6. bell shaped, Some do well, some do bad, some do fairly

  7. Bell shaped, probably a fairly spread out amount of people per household

  8. Skewed left, older people have the disease more than younger

14

  1. Skewed right, People probably have a couple drinks a week while some drink a little too much

  2. Skewed right, people who live there probably are of younger age

  3. Skewed left, old people wear hearing aids

  4. Bell Shaped, probably bell shaped around 5 feet 11 inches

15

dattt <- c(16, 18, 12, 3, 1)

rel.freqqq <- dattt/sum(dattt)

categoriesss <- c("Zero", "One", "Two", "Three", "Four")

answerrr <- data.frame(categoriesss,rel.freqqq)

answerrr
##   categoriesss rel.freqqq
## 1         Zero       0.32
## 2          One       0.36
## 3          Two       0.24
## 4        Three       0.06
## 5         Four       0.02
  1. 30%

  2. 60%

16

free_throws <- c(16, 11, 9, 7, 2,3,0,1,0,1)

rel.freqqq <- free_throws/sum(free_throws)

categoriesss <- c("1", "2", "3", "4","5","6","7","8","9","10")

answerrr <- data.frame(categoriesss,rel.freqqq)

answerrr
##    categoriesss rel.freqqq
## 1             1       0.32
## 2             2       0.22
## 3             3       0.18
## 4             4       0.14
## 5             5       0.04
## 6             6       0.06
## 7             7       0.00
## 8             8       0.02
## 9             9       0.00
## 10           10       0.02
  1. 14%

  2. 2%

  3. 4%

25

  1. Discrete, For example, You cant have 3.5 Tvs in a household, in which case these are discrete.

tv <- c(1, 1, 1, 2, 1,
        1, 2, 2, 3, 2,
        4, 2, 2, 2, 2,
        2, 4, 1, 2, 2,
        3, 1, 3, 1, 2,
        3, 1, 1, 2, 1,
        5, 0 ,1, 3, 3,
        1, 3, 3, 2, 1)

#table(tv)

tv <- c(1,14,14,8,2,1)

tv.freq <- tv/sum(tv)

tv.cat <- c("0", "1", "2", "3","4","5")

freq.tab <- data.frame(tv.cat,tv)
rfreq.tab <- data.frame(tv.cat,tv.freq)


freq.tab
##   tv.cat tv
## 1      0  1
## 2      1 14
## 3      2 14
## 4      3  8
## 5      4  2
## 6      5  1
rfreq.tab
##   tv.cat tv.freq
## 1      0   0.025
## 2      1   0.350
## 3      2   0.350
## 4      3   0.200
## 5      4   0.050
## 6      5   0.025
  1. 20%

  2. 7.5%