Importing Excel, CSV, and Text Files from Documents

library(openxlsx)
library(tibble)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)
#Importing excel file
excel <- read.xlsx("class3practice.xlsx")
#Tibbling the excel file 
tibbleexcel <- tbl_df(excel)
tibbleexcel
## # A tibble: 15 x 7
##          Names  num1  num2  num3  num4  num5  num6
##  *       <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1  Cinderella     4     2     3     4     5     3
##  2     Alladin     3     4     4     6     9     4
##  3     Pinocio     5     6     5     8     7     5
##  4       Dorey     6     8     2     9     6     6
##  5        Nemo     4     9     3     4     4     7
##  6     Jasmine     8     7     4     2     3     5
##  7       Jafar     3     6     5     1     6     3
##  8 Pocahontas      2     4     4     6     5     4
##  9         Gus     5     3     3     7     1     5
## 10     Lucifer     8     1     4     8     2     2
## 11       Belle     9     2     5     3     3     3
## 12       Beast     3     4     6     4     9     4
## 13    Gepetto      1     6     7     8     8     5
## 14        Aboo     4     7     8     7     6     1
## 15      Genie      6     8     7     4     5     4
#Importing CSV file
csv<-read.csv("class3practice.csv")
#Tibbling CSV file 
tibblecsv <- tbl_df(csv)
tibblecsv
## # A tibble: 15 x 7
##          Names  num1  num2  num3  num4  num5  num6
##         <fctr> <int> <int> <int> <int> <int> <int>
##  1  Cinderella     4     2     3     4     5     3
##  2     Alladin     3     4     4     6     9     4
##  3     Pinocio     5     6     5     8     7     5
##  4       Dorey     6     8     2     9     6     6
##  5        Nemo     4     9     3     4     4     7
##  6     Jasmine     8     7     4     2     3     5
##  7       Jafar     3     6     5     1     6     3
##  8 Pocahontas      2     4     4     6     5     4
##  9         Gus     5     3     3     7     1     5
## 10     Lucifer     8     1     4     8     2     2
## 11       Belle     9     2     5     3     3     3
## 12       Beast     3     4     6     4     9     4
## 13    Gepetto      1     6     7     8     8     5
## 14        Aboo     4     7     8     7     6     1
## 15      Genie      6     8     7     4     5     4
#Importing text file
txt<-read.table("class3practice.txt")
#Tibbling text file 
tibbletxt <- tbl_df(txt)
tibbletxt
## # A tibble: 16 x 7
##            V1     V2     V3     V4     V5     V6     V7
##        <fctr> <fctr> <fctr> <fctr> <fctr> <fctr> <fctr>
##  1      Names   num1   num2   num3   num4   num5   num6
##  2 Cinderella      4      2      3      4      5      3
##  3    Alladin      3      4      4      6      9      4
##  4    Pinocio      5      6      5      8      7      5
##  5      Dorey      6      8      2      9      6      6
##  6       Nemo      4      9      3      4      4      7
##  7    Jasmine      8      7      4      2      3      5
##  8      Jafar      3      6      5      1      6      3
##  9 Pocahontas      2      4      4      6      5      4
## 10        Gus      5      3      3      7      1      5
## 11    Lucifer      8      1      4      8      2      2
## 12      Belle      9      2      5      3      3      3
## 13      Beast      3      4      6      4      9      4
## 14    Gepetto      1      6      7      8      8      5
## 15       Aboo      4      7      8      7      6      1
## 16      Genie      6      8      7      4      5      4

Importing CSV Files from the Web

# Importing CSV file from the web
web <- read.csv("http://www.personal.psu.edu/dlp/alphaheight_weight_dataset.csv")
#Tibbling CSV file from web
tibbleweb <- tbl_df(web)
tibbleweb
## # A tibble: 200 x 4
##    Index Height Weight Gender
##    <int>  <dbl>  <dbl> <fctr>
##  1     1  65.78 112.99 female
##  2     2  71.52 136.49   male
##  3     3  69.40 153.03   male
##  4     4  68.22 142.34 female
##  5     5  67.79 144.30   male
##  6     6  68.70 123.30   male
##  7     7  69.80 141.49   male
##  8     8  70.01 136.46 female
##  9     9  67.90 112.37   male
## 10    10  66.78 120.67   male
## # ... with 190 more rows
#Importing another CSV file from the web
web2 <- read.csv("http://www.personal.psu.edu/dlp/w540/datasets/titanicsurvival.csv")
#Tibbling CSV file from web 
tibbleweb2 <- tbl_df(web2)
tibbleweb2
## # A tibble: 2,201 x 4
##    Class   Age   Sex Survive
##    <int> <int> <int>   <int>
##  1     1     1     1       1
##  2     1     1     1       1
##  3     1     1     1       1
##  4     1     1     1       1
##  5     1     1     1       1
##  6     1     1     1       1
##  7     1     1     1       1
##  8     1     1     1       1
##  9     1     1     1       1
## 10     1     1     1       1
## # ... with 2,191 more rows
library(haven)

Importing SPSS File from the Web

#Importing SPSS file 
web3 <- read_spss("http://cehd.gmu.edu/assets/dimitrovbook/EXAMPLE_23_1.sav")
#Tibbling file 
tibbleweb3 <- tbl_df(web3)
tibbleweb3
## # A tibble: 1,028 x 12
##      Illness    Item_1    Item_2    Item_3 Item_4    Item_5    Item_6
##    <dbl+lbl> <dbl+lbl> <dbl+lbl> <dbl+lbl>  <dbl> <dbl+lbl> <dbl+lbl>
##  1         1         4         3         3      3         4         2
##  2         0         3         2         4      3         4         3
##  3         0         4         3         4      3         3         2
##  4         1         5         5         4      5         4         5
##  5         1         2         2         2      2         2         2
##  6         0         3         2         2      3         2         1
##  7         0         2         1         1      2         1         2
##  8         0         3         2         4      4         2         2
##  9         0         2         4         3      3         3         3
## 10         1         1         1         1      1         1         1
## # ... with 1,018 more rows, and 5 more variables: Item_7 <dbl>,
## #   Item_8 <dbl+lbl>, Item_9 <dbl+lbl>, Item_10 <dbl+lbl>, Item_11 <dbl>
knitr::opts_chunk$set(echo = TRUE)

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.