Infy Stock descriptives and charts
This dashboard allows you to explore trends in Infosys stock prices from 2007 onwards. We will forecast Infy prices using many timeseries algorithms as well as ML models including deep learning frameworks.
Index INFY.NS.Open INFY.NS.High INFY.NS.Low
Min. :2007-01-02 Min. : 434.0 Min. : 440.5 Min. : 419.0
1st Qu.:2009-09-09 1st Qu.: 807.8 1st Qu.: 819.1 1st Qu.: 797.1
Median :2012-05-16 Median : 951.9 Median : 962.5 Median : 941.1
Mean :2012-05-16 Mean : 929.1 Mean : 940.2 Mean : 917.4
3rd Qu.:2015-01-22 3rd Qu.:1054.9 3rd Qu.:1067.5 3rd Qu.:1044.6
Max. :2017-10-03 Max. :1315.4 Max. :1328.1 Max. :1309.2
INFY.NS.Close INFY.NS.Volume INFY.NS.Adjusted
Min. : 275.6 Min. : 0 Min. : 175.1
1st Qu.: 555.0 1st Qu.: 2960828 1st Qu.: 361.8
Median : 704.4 Median : 4089820 Median : 510.2
Mean : 732.4 Mean : 5076908 Mean : 596.0
3rd Qu.: 944.8 3rd Qu.: 5903858 3rd Qu.: 905.4
Max. :1267.6 Max. :83160204 Max. :1221.0
INFY.NS.Open INFY.NS.High INFY.NS.Low INFY.NS.Close
2007-01-02 999.599 1019.121 992.989 568.162
2007-01-03 1008.317 1029.326 1008.317 577.838
2007-01-04 1029.858 1031.544 1009.383 571.325
2007-01-05 1014.241 1022.671 1000.732 568.763
INFY.NS.Volume INFY.NS.Adjusted
2007-01-02 4314932 320.1455
2007-01-03 5444628 325.5977
2007-01-04 4388532 321.9278
2007-01-05 3510976 320.4841
INFY.NS.Open INFY.NS.High INFY.NS.Low INFY.NS.Close
2017-09-27 906.1 907.9 895.1 899.80
2017-09-28 896.1 903.9 894.3 896.00
2017-09-29 898.0 902.4 895.0 899.90
2017-10-03 899.9 912.0 899.9 903.55
INFY.NS.Volume INFY.NS.Adjusted
2017-09-27 3000069 899.80
2017-09-28 8768633 896.00
2017-09-29 2852916 899.90
2017-10-03 2473761 903.55
Infy Stock distribution exploration
[1] "483" "491" "481" "483" "491" "492" "441" "481" "491" "1953"
[11] "2617" "1549" "1486" "2618" "1057" "1302" "1550" "2348" "2620"
Forecasting using exponential smoothing ets()-:Daily prices
Forecasting using auto.arima -:Daily prices
ME RMSE MAE MPE MAPE MASE
Training set 0.1358915 13.34957 9.1323 -0.002223269 1.34826 0.9979284
ACF1
Training set 0.001346911
Forecasting using auto.arima -:monthly mean prices
ME RMSE MAE MPE MAPE MASE
Training set 2.202779 40.08032 31.7189 0.1601666 4.710236 0.9772979
ACF1
Training set -0.01202659
Jan Feb Mar Apr May Jun Jul
2007 558.2987 572.9821 518.9500 508.1606 494.7119 489.1524 491.3028
2008 386.8347 393.8399 354.1389 392.9494 460.6163 465.3851 410.6500
2009 307.9443 311.1526 318.8632 353.9819 393.1575 434.3733 466.5312
2010 646.3789 625.7762 675.6660 678.7342 660.3548 682.7285 697.8283
2011 827.0593 770.9951 765.9165 768.7936 712.8745 707.6319 707.8940
2012 679.3702 710.9774 712.5227 635.0066 597.3460 614.4011 573.6090
2013 657.7043 704.3888 724.7099 636.0119 588.7472 609.2107 676.2684
2014 910.7843 916.0874 869.3532 806.2467 782.0739 789.5845 821.7146
2015 1045.5171 1126.5053 1114.3838 1062.2660 994.0945 1001.2077 1018.7848
2016 1106.9750 1123.9119 1172.5550 1210.0528 1209.1523 1205.4477 1122.6025
2017 965.2643 975.3026 1026.7250 946.6000 957.2818 949.3119 974.2048
Aug Sep Oct Nov Dec
2007 469.6000 461.2576 480.7693 415.7005 424.1519
2008 421.1399 404.4155 327.3013 309.8617 288.5054
2009 517.0624 566.1762 560.2101 583.3049 623.0953
2010 697.4584 737.6648 764.7868 757.2856 813.9697
2011 605.7332 591.0481 667.9529 684.8181 681.5196
2012 583.7840 631.4592 609.2525 594.7803 579.7919
2013 755.6194 759.5175 807.5530 835.6731 857.2150
2014 888.8205 921.9239 961.2804 1051.3144 997.0936
2015 1111.8548 1100.1250 1135.7875 1087.6306 1076.5545
2016 1053.4477 1044.6075 1027.8882 951.6024 988.5500
2017 952.4571 899.2238 903.5500
Forecasting using Neural Networks model:Daily prices
Neural Network Time Series Forecasts
Neural network autoregression (NNAR) models
NNAR models in R
nnetar function from forecast v7.3 by Rob Hyndman
Neural networks Model:Forecasting: principles and practice-Rob Hyndman
Forecasting using Neural Networks model:monthly mean prices
Forecasting using Support vector regression (SVR)-:Daily prices
Forecasting using extreme gradient boosting-:Daily prices
In the last few years there have been more attempts at a fresh approach to statistical timeseries forecasting using the increasingly accessible tools of machine learning. This means methods like neural networks (http://www.neural-forecasting-competition.com/index.htm) and extreme gradient boosting (https://en.wikipedia.org/wiki/Gradient_boosting), as supplements or even replacements of the more traditional tools like auto-regressive integrated moving average (ARIMA) models.
The forecastxgb package aims to provide time series modelling and forecasting functions that combine the machine learning approach of Chen, He and Benesty’s xgboost (https://CRAN.R-project.org/package=xgboost) with the convenient handling of time series and familiar API of Rob Hyndman’s forecast (http://github.com/robjhyndman/forecast). It applies to time series the Extreme Gradient Boosting proposed in Greedy Function Approximation: A Gradient Boosting Machine, by Jerome Friedman in 2001 (http://www.jstor.org/stable/2699986). xgboost has become an important machine learning algorithm; nicely explained in this accessible documentation (http://xgboost.readthedocs.io/en/latest/model.html).
R package forecastxgb (https://github.com/ellisp/forecastxgb-r-package/) & from the forecastxgb vignette (https://github.com/ellisp/forecastxgb-r-package/blob/master/pkg/vignettes/xgbts.Rmd)
Forecasting using ARIMAX-:Daily prices