df<-read.csv("https://raw.githubusercontent.com/tuyenhavan/Statistics/master/Area_Sentinel-2.csv")
head(df)
## Land Area Classifiers
## 1 Agriculture 1242.40 MLC
## 2 Urban/Built-up 104.50 MLC
## 3 Mining 117.10 MLC
## 4 Forest 2001.90 MLC
## 5 Water 54.97 MLC
## 6 Agriculture 1530.10 ANN
COmparing TNMT area and Algorithms-based areas
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.3.3
ggplot(data=df,aes(x=Land,y=Area,fill=Classifiers)) +
geom_bar(stat="identity",position = "dodge") + scale_fill_discrete(name="Classification Areas") +
xlab("Land Cover Types") + ylab("Area (square kilometres)") + theme_bw() + coord_flip()
df<-read.csv("https://raw.githubusercontent.com/tuyenhavan/Statistics/master/Area_Landsat_8.csv")
df1<-df[c(1:15),]
ggplot(data=df,aes(x=Land,y=Area,fill=Classifiers)) +
geom_bar(stat="identity",position = "dodge") + scale_fill_discrete(name="Classification Areas") +
xlab("Land Cover Types") + ylab("Area (square kilometres)") + theme_bw() + coord_flip()
ggplot(data=df1,aes(x=Land,y=Area,fill=Classifiers)) +
geom_bar(stat="identity",position = "dodge") + scale_fill_discrete(name="Classifiers") +
xlab("Land Cover Types") + ylab("Area (square kilometres)") + theme_bw()
df2<-read.csv("https://raw.githubusercontent.com/tuyenhavan/Statistics/master/Area_Landsat_Change.csv")
ggplot(data=df2,aes(x=Land,y=Area,fill=Year)) +
geom_bar(stat="identity",position = "dodge") + scale_fill_discrete(name="Legend") +
xlab("Land Cover Types") + ylab("Area (square kilometres)") + theme_bw()