Binomial distribution

require('ggplot2')
x <- c(0:10)
y <- dbinom(x, size=10, .5, log = FALSE)
qplot(x, y, color = I("green"), 
      size = I(2), alpha = I(1/2), geom = c("point"))

the Pascal triangle starts with: x = 0 size = 0 the density = 1 (the vertex of the triangle)

then we are moving to: x = c(0:1) size = 1 //one sample from the choise of two- 0 and 1 the density = 0.5, 0.5 … x = c(0:n) size = n probability = p

The thing that is freequently being forgotten is the way it behaves in asymmetric case, when the probability of a ‘positive’ outcome shifts towards 0 or 1.

y <- dbinom(x, size=10, .75, log = FALSE)
qplot(x, y, color = I("red"), 
      size = I(2), alpha = I(1/2), geom = c("point"))

and

y <- dbinom(x, size=10, .25, log = FALSE)
qplot(x, y, color = I("magenta"), 
      size = I(2), alpha = I(1/2), geom = c("point"))

The formula is

#dbinom formula (the function is in C)
dbin <- function(x, size, p) {
    d <- choose(size, x)*p^x*(1-p)^(size-x)
}
y <- dbin(x, size=10, .25)
qplot(x, y, size = I(2), color = I("magenta")) +geom_line(size =1, alpha =.5, color="red")

LS0tCnRpdGxlOiAiQmlub21pYWwgRGlzdHJpYnV0aW9uIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgpCaW5vbWlhbCBkaXN0cmlidXRpb24gCgpgYGB7cn0KcmVxdWlyZSgnZ2dwbG90MicpCgp4IDwtIGMoMDoxMCkKeSA8LSBkYmlub20oeCwgc2l6ZT0xMCwgLjUsIGxvZyA9IEZBTFNFKQoKcXBsb3QoeCwgeSwgY29sb3IgPSBJKCJncmVlbiIpLCAKICAgICAgc2l6ZSA9IEkoMiksIGFscGhhID0gSSgxLzIpLCBnZW9tID0gYygicG9pbnQiKSkKYGBgCgp0aGUgUGFzY2FsIHRyaWFuZ2xlIHN0YXJ0cyB3aXRoOgogICAgICAgICAgICB4ID0gMAogICAgICAgICBzaXplID0gMAogdGhlIGRlbnNpdHkgID0gMSAodGhlIHZlcnRleCBvZiB0aGUgdHJpYW5nbGUpCgogdGhlbiB3ZSBhcmUgbW92aW5nIHRvOgogICAgICAgICAgICB4ID0gYygwOjEpCiAgICAgICAgIHNpemUgPSAxICAgICAgIC8vb25lIHNhbXBsZSBmcm9tIHRoZSBjaG9pc2Ugb2YgdHdvLSAwIGFuZCAxCiB0aGUgZGVuc2l0eSAgPSAwLjUsIDAuNQogLi4uCiAgICAgICAgICAgIHggPSBjKDA6bikKICAgICAgICAgc2l6ZSA9IG4KICBwcm9iYWJpbGl0eSA9IHAKClRoZSB0aGluZyB0aGF0IGlzIGZyZWVxdWVudGx5IGJlaW5nIGZvcmdvdHRlbiBpcyB0aGUgd2F5IGl0IGJlaGF2ZXMgaW4gYXN5bW1ldHJpYyBjYXNlLCB3aGVuIHRoZSBwcm9iYWJpbGl0eSBvZiBhICdwb3NpdGl2ZScgb3V0Y29tZSBzaGlmdHMgdG93YXJkcyAwIG9yIDEuCgpgYGB7cn0KeSA8LSBkYmlub20oeCwgc2l6ZT0xMCwgLjc1LCBsb2cgPSBGQUxTRSkKCnFwbG90KHgsIHksIGNvbG9yID0gSSgicmVkIiksIAogICAgICBzaXplID0gSSgyKSwgYWxwaGEgPSBJKDEvMiksIGdlb20gPSBjKCJwb2ludCIpKQpgYGAKCmFuZAoKYGBge3J9CnkgPC0gZGJpbm9tKHgsIHNpemU9MTAsIC4yNSwgbG9nID0gRkFMU0UpCgpxcGxvdCh4LCB5LCBjb2xvciA9IEkoIm1hZ2VudGEiKSwgCiAgICAgIHNpemUgPSBJKDIpLCBhbHBoYSA9IEkoMS8yKSwgZ2VvbSA9IGMoInBvaW50IikpCmBgYAoKClRoZSBmb3JtdWxhIGlzCgoKYGBge3J9CiNkYmlub20gZm9ybXVsYSAodGhlIGZ1bmN0aW9uIGlzIGluIEMpCgpkYmluIDwtIGZ1bmN0aW9uKHgsIHNpemUsIHApIHsKICAgIGQgPC0gY2hvb3NlKHNpemUsIHgpKnBeeCooMS1wKV4oc2l6ZS14KQp9Cgp5IDwtIGRiaW4oeCwgc2l6ZT0xMCwgLjI1KQoKcXBsb3QoeCwgeSwgc2l6ZSA9IEkoMiksIGNvbG9yID0gSSgibWFnZW50YSIpKSArZ2VvbV9saW5lKHNpemUgPTEsIGFscGhhID0uNSwgY29sb3I9InJlZCIpCmBgYAo=