data(anscombe)
anscombe
##    x1 x2 x3 x4    y1   y2    y3    y4
## 1  10 10 10  8  8.04 9.14  7.46  6.58
## 2   8  8  8  8  6.95 8.14  6.77  5.76
## 3  13 13 13  8  7.58 8.74 12.74  7.71
## 4   9  9  9  8  8.81 8.77  7.11  8.84
## 5  11 11 11  8  8.33 9.26  7.81  8.47
## 6  14 14 14  8  9.96 8.10  8.84  7.04
## 7   6  6  6  8  7.24 6.13  6.08  5.25
## 8   4  4  4 19  4.26 3.10  5.39 12.50
## 9  12 12 12  8 10.84 9.13  8.15  5.56
## 10  7  7  7  8  4.82 7.26  6.42  7.91
## 11  5  5  5  8  5.68 4.74  5.73  6.89
plot(anscombe$y1 ~ anscombe$x1)

# Fit the regression model.
data.1 <- lm(y1~x1, data = anscombe)
# Scatterplot of the data.
plot(anscombe$y1 ~ anscombe$x1,
ylab = expression(italic(Y)),
ylim = c(2, 12),
xlab = expression(italic(X)),
main = "Anscombe's Data Set 1")
# Add the fitted regression line.
abline(data.1)
# Add the text and expressions within the figure.
text(5.9, 9.35,expression(paste("The value of ", italic(R)^2, " is.67", sep = "")))
text(5.9, 10.15, expression(italic(hat(Y)) == 3+italic(X)*.5))
# Break the axis by adding a zigzag.
require(plotrix)
## Loading required package: plotrix
axis.break(axis = 1, style = "zigzag")
axis.break(axis = 2, style = "zigzag")

Cassidy <- read.csv("Cassady.csv")
pairs(cbind(GPA = Cassidy$GPA, CTA_Total = Cassidy$CTA.tot, BS_Total = Cassidy$BStotal))

cor(na.omit(cbind(GPA = Cassidy$GPA, CTA_Total = Cassidy$CTA.tot,BS_Total = Cassidy$BStotal)))
##                  GPA  CTA_Total   BS_Total
## GPA        1.0000000 -0.3031156 -0.1293748
## CTA_Total -0.3031156  1.0000000  0.7093240
## BS_Total  -0.1293748  0.7093240  1.0000000
Achieve <- read.csv("Achieve.csv")
library(lattice)

dotplot(
class ~ geread,
data = Achieve, jitter.y = TRUE, ylab = "Classroom")

Achieve.940.767 <- Achieve[Achieve$corp == 940 & Achieve$school == 767,]
dotplot(
class ~ geread,
data = Achieve.940.767, jitter.y = TRUE, ylab = "Classroom",
main = "Dotplot of \'geread\' for Classrooms in School 767, Which is Within Corporation 940")

dotplot(
reorder(class, geread) ~ geread,
data = Achieve.940.767, jitter.y = TRUE, ylab = "Classroom",
main = "Dotplot of \'geread\' for Classrooms in School 767, Which is Within Corporation 940")

dotplot(reorder(corp, geread) ~ geread, data = Achieve,
jitter.y = TRUE,
ylab = "Classroom", main = "Dotplot of \'geread\' for All Corporations")

Achieve <- cbind(Achieve, Classroom_Unique = 
                   paste(Achieve$corp, Achieve$school, Achieve$class, sep = ""))


xyplot(geread ~ gevocab | corp, data = Achieve)

xyplot(geread ~ gevocab | school, data = Achieve[Achieve$corp == 940,], 
       strip = strip.custom(strip.names = FALSE, 
                              strip.levels = c(FALSE, TRUE)), main = "Schools in Corporation 940")

library(nlme)
library(MASS)
mathfinal <- read.csv("MathFinal.csv")
summary(model8.1<-glmmPQL(score2~Salary,random = ~1|school, family = binomial, data = mathfinal))
## iteration 1
## iteration 2
## iteration 3
## iteration 4
## Linear mixed-effects model fit by maximum likelihood
##  Data: mathfinal 
##   AIC BIC logLik
##    NA  NA     NA
## 
## Random effects:
##  Formula: ~1 | school
##         (Intercept)  Residual
## StdDev:   0.4934744 0.9969691
## 
## Variance function:
##  Structure: fixed weights
##  Formula: ~invwt 
## Fixed effects: score2 ~ Salary 
##                  Value Std.Error   DF    t-value p-value
## (Intercept)  0.6305205 0.3556496 6782  1.7728698  0.0763
## Salary      -0.0000078 0.0000094   30 -0.8369916  0.4092
##  Correlation: 
##        (Intr)
## Salary -0.966
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -2.1309160 -1.0463880  0.6415727  0.8300013  1.4503588 
## 
## Number of Observations: 6814
## Number of Groups: 32
summary(model8.2<-glmmPQL(score2~Salary,random = ~Salary|school,family = binomial, data = mathfinal))
## iteration 1
## iteration 2
## iteration 3
## iteration 4
## Linear mixed-effects model fit by maximum likelihood
##  Data: mathfinal 
##   AIC BIC logLik
##    NA  NA     NA
## 
## Random effects:
##  Formula: ~Salary | school
##  Structure: General positive-definite, Log-Cholesky parametrization
##             StdDev       Corr  
## (Intercept) 4.934748e-01 (Intr)
## Salary      2.367619e-08 0     
## Residual    9.969691e-01       
## 
## Variance function:
##  Structure: fixed weights
##  Formula: ~invwt 
## Fixed effects: score2 ~ Salary 
##                  Value Std.Error   DF   t-value p-value
## (Intercept)  0.6305204 0.3556504 6782  1.772866  0.0763
## Salary      -0.0000078 0.0000094   30 -0.836989  0.4092
##  Correlation: 
##        (Intr)
## Salary -0.966
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -2.1309167 -1.0463880  0.6415726  0.8300013  1.4503593 
## 
## Number of Observations: 6814
## Number of Groups: 32