library(tidyverse)
library(ggjoy)
library(viridis)
library(cowplot)
Simulated data from \(N_e=10,000\) with bottleneck and growth following Beissinger et al. 2016. Munged data will be neutral \(\pi\) and \(\xi_1\) every 100 generations in 25 4Kb windows centered around “gene” which has neutral and deleterious mutations. Deleterious mutations are drawn from a gamma with mean \(s=-0.0005 (N_es\approx5)\).
read_sim<-function(pidata,xidata){
#read data
pi<-as.tibble(read.csv(pidata,header=F))
pi<-mutate(pi,stat=rep("pi",length(pi[,1])))
xi<-as.tibble(read.csv(xidata,header=F))
xi<-mutate(xi,stat=rep("xi",length(xi[,1])))
#munge into single tibble of means
data<-rbind(xi,pi) %>%
`colnames<-`(c("gen", 1:25, "sim", "stat")) %>%
gather(window,value,2:26) %>%
mutate(gen=gen-100000) %>%
group_by(gen,stat,window) %>%
summarize(mean_val=mean(value)) %>%
mutate(window=(as.numeric(window)-13)*4000*3E-5,mean_val=if_else(window==13,mean_val,mean_val/4))
return(data)
}
simplot<-function(somedata,mystat,label){
ggplot(filter(somedata,gen %% 100 <1,stat==mystat), aes(x=window, y=mean_val, group = gen,color=gen)) +
scale_color_viridis() +
background_grid(major = "xy", minor = "none") +
geom_line() +
ylab(label) + xlab("cM") +
scale_x_continuous(breaks = seq(-1.5,1.5,0.5))
}
maize<-read_sim("~/Desktop/sim_neutralPi_s5e-4.csv","~/Desktop/sim_singleton_s5e-4.csv")
## Warning: package 'bindrcpp' was built under R version 3.3.2
simplot(maize,"pi",expression(bar(pi)))
simplot(maize,"xi",expression(bar(xi[i])))
euros<-read_sim("~/Desktop/sim_neutralPi_European.csv","~/Desktop/sim_singleton_European.csv")
simplot(euros,"pi",expression(bar(pi)))
simplot(euros,"xi",expression(bar(xi[i])))
maize<-read_sim("~/Desktop/sim_neutralPi_s5e-3.csv","~/Desktop/sim_singleton_s5e-3.csv")
simplot(maize,"pi",expression(bar(pi)))
simplot(maize,"xi",expression(bar(xi[i])))
maize<-read_sim("~/Desktop/sim_neutralPi_s5e-5.csv","~/Desktop/sim_singleton_s5e-5.csv")
simplot(maize,"pi",expression(bar(pi)))
simplot(maize,"xi",expression(bar(xi[i])))