create data

DT<-data.table(ID=1:50, Capacity=sample(100:1000,size=50,replace=F), Code=sample(LETTERS[1:4], 50, replace=T), State=rep(c("Alabama","Indiana","Texas","Nevada"),50))

Simple data.table command

DT[Code=="C",mean(Capacity),State]
DT[Code=="D"]
DT[,mean(Capacity),by=State]
DT[Code=="A", mean(Capacity)]
[1] 614.5714

load data which has 130MB with 1714258 rows of 12 columns

DT<-fread("C:\\Users\\r631758\\Desktop\\r631758\\R codes\\datatable\\GB_full.csv")

Read 43.0% of 1720673 rows
Read 70.9% of 1720673 rows
Read 1720673 rows and 12 (of 12) columns from 0.191 GB file in 00:00:05

subsetting rows

sub_rows<-DT[V4=="England" & V3=="Beswick"]

subsetting columns

ordering columns

dt_order<-DT[order(V4,-V8)]

add a new column

DT[,V_new:=V10+V11]

update row values

delete a column

compute the average

computer the count

setting a key

subsetting England from V4

set multiple keys

for more info: https://cran.r-project.org/web/packages/data.table/vignettes/datatable-intro.html

LS0tDQp0aXRsZTogImRhdGEudGFibGUgZXhhbXBsZXMiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQojY3JlYXRlIGRhdGENCmBgYHtyfQ0KRFQ8LWRhdGEudGFibGUoSUQ9MTo1MCwgQ2FwYWNpdHk9c2FtcGxlKDEwMDoxMDAwLHNpemU9NTAscmVwbGFjZT1GKSwgQ29kZT1zYW1wbGUoTEVUVEVSU1sxOjRdLCA1MCwgcmVwbGFjZT1UKSwgU3RhdGU9cmVwKGMoIkFsYWJhbWEiLCJJbmRpYW5hIiwiVGV4YXMiLCJOZXZhZGEiKSw1MCkpDQpgYGANCg0KI1NpbXBsZSBkYXRhLnRhYmxlIGNvbW1hbmQNCmBgYHtyfQ0KRFRbQ29kZT09IkMiLG1lYW4oQ2FwYWNpdHkpLFN0YXRlXQ0KRFRbQ29kZT09IkQiXQ0KRFRbLG1lYW4oQ2FwYWNpdHkpLGJ5PVN0YXRlXQ0KRFRbQ29kZT09IkEiLCBtZWFuKENhcGFjaXR5KV0NCmBgYA0KDQojbG9hZCBkYXRhIHdoaWNoIGhhcyAxMzBNQiB3aXRoIDE3MTQyNTggcm93cyBvZiAxMiBjb2x1bW5zDQpgYGB7cn0NCkRUPC1mcmVhZCgiQzpcXFVzZXJzXFxyNjMxNzU4XFxEZXNrdG9wXFxyNjMxNzU4XFxSIGNvZGVzXFxkYXRhdGFibGVcXEdCX2Z1bGwuY3N2IikNCmBgYA0KDQojc3Vic2V0dGluZyByb3dzDQpgYGB7cn0NCnN1Yl9yb3dzPC1EVFtWND09IkVuZ2xhbmQiICYgVjM9PSJCZXN3aWNrIl0NCmBgYA0KI3N1YnNldHRpbmcgY29sdW1ucw0KYGBge3J9DQpzdWJfY29sdW1uczwtRFRbLC4oVjIsVjMsVjQpXQ0KYGBgDQojb3JkZXJpbmcgY29sdW1ucw0KYGBge3J9DQpkdF9vcmRlcjwtRFRbb3JkZXIoVjQsLVY4KV0NCmBgYA0KI2FkZCBhIG5ldyBjb2x1bW4NCmBgYHtyfQ0KRFRbLFZfbmV3Oj1WMTArVjExXQ0KYGBgDQojdXBkYXRlIHJvdyB2YWx1ZXMNCmBgYHtyfQ0KRFRbVjg9PSJBYmVyZGVlbiBDaXR5IiwgVjg6PSJBYnIgQ2l0eSJdDQpgYGANCg0KI2RlbGV0ZSBhIGNvbHVtbg0KYGBge3J9DQpEVFssYygiVjYiLCJWNyIpOj1OVUxMXQ0KYGBgDQojY29tcHV0ZSB0aGUgYXZlcmFnZQ0KYGBge3J9DQpEVFssLihhdmVyYWdlPW1lYW4oVjEwLG5hLnJtPVQgKSksIGJ5PVY0XQ0KYGBgDQoNCg0KI2NvbXB1dGVyIHRoZSBjb3VudA0KYGBge3J9DQpEVFssLk4sIGJ5PVY0XQ0KYGBgDQoNCiNzZXR0aW5nIGEga2V5DQpgYGB7cn0NCnNldGtleShEVCxWNCkNCmBgYA0KI3N1YnNldHRpbmcgRW5nbGFuZCBmcm9tIFY0DQpgYGB7cn0NCkRUWy4oIkVuZ2xhbmQiKV0NCkRUWy4oYygiRW5nbGFuZCIsIlNjb3RsYW5kIikgKV0NCmBgYA0KDQojc2V0IG11bHRpcGxlIGtleXMNCmBgYHtyfQ0Kc2V0a2V5KERULFYzLFY0KQ0KYGBgDQpgYGB7cn0NCkRUWy4oIlNoZXRsYW5kIFNvdXRoIFdhcmQiLCJTY290bGFuZCIpXQ0KYGBgDQoNCiNmb3IgbW9yZSBpbmZvOiBodHRwczovL2NyYW4uci1wcm9qZWN0Lm9yZy93ZWIvcGFja2FnZXMvZGF0YS50YWJsZS92aWduZXR0ZXMvZGF0YXRhYmxlLWludHJvLmh0bWwNCg==