library("Rcpp")
library("Biostrings")
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
##
## clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
## clusterExport, clusterMap, parApply, parCapply, parLapply,
## parLapplyLB, parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
##
## IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
## anyDuplicated, append, as.data.frame, cbind, colMeans,
## colnames, colSums, do.call, duplicated, eval, evalq, Filter,
## Find, get, grep, grepl, intersect, is.unsorted, lapply,
## lengths, Map, mapply, match, mget, order, paste, pmax,
## pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce,
## rowMeans, rownames, rowSums, sapply, setdiff, sort, table,
## tapply, union, unique, unsplit, which, which.max, which.min
## Loading required package: S4Vectors
## Loading required package: stats4
##
## Attaching package: 'S4Vectors'
## The following object is masked from 'package:base':
##
## expand.grid
## Loading required package: IRanges
## Loading required package: XVector
##
## Attaching package: 'Biostrings'
## The following object is masked from 'package:base':
##
## strsplit
setwd("/media/ekaterina/Data/Study/Magistracy/10term/NIR/Prog/")
sourceCpp("/media/ekaterina/Data/Study/Magistracy/10term/NIR/Prog/Rccp/ssw_R.cpp", cacheDir = "/media/ekaterina/Data/Study/Magistracy/10term/NIR/Prog/Rccp/")
GenerateDNAseq <- function(l)
{
seq <- sample(DNA_ALPHABET[1:4], size=l, replace=TRUE)
seq <- paste(seq, collapse="")
return(DNAString(seq))
}
SubstituteSymbol <- function(x,k, len_alphabet)
{
symbol <- sample(c("A", "C", "G", "T"), size = 1)
substr(x,k,k) <- symbol
return(x)
}
InsertWithLeftShift <- function(x,k, len_alphabet)
{
substr(x, 1, k-1) <- substr(x, 2, k)
res <- SubstituteSymbol(x,k, len_alphabet)
return(res)
}
InsertWithRightShift <- function(x,k, len_alphabet)
{
substr(x, k+1,nchar(x)) <- substr(x, k, nchar(x) - 1)
res <- SubstituteSymbol(x,k, len_alphabet)
return(res)
}
DelAndLeftShift <- function(x,k, len_alphabet)
{
substr(x, 2, k) <- substr(x, 1, k-1)
res <- SubstituteSymbol(x,1, len_alphabet)
return(res)
}
DelAndRightShift <- function(x,k, len_alphabet)
{
substr(x, k,nchar(x)-1) <- substr(x, k+1, nchar(x))
res <- SubstituteSymbol(x,nchar(x), len_alphabet)
return(res)
}
Neighbor <- function(x, len_alphabet)
{
x <- toString(x)
k = sample(1:len_alphabet, 1)
roll <- sample(1:5, 1, prob = c(0.5, 1/8,1/8,1/8,1/8))
switch(roll,
SubstituteSymbol(x,k, len_alphabet),
InsertWithLeftShift(x,k, len_alphabet),
InsertWithRightShift(x,k, len_alphabet),
DelAndLeftShift(x,k, len_alphabet),
DelAndRightShift(x,k, len_alphabet))
}
isflat <- function(H, Smax, Smin)
{
H1 <- H[Smin:Smax]
m <- mean(H1)
all(H1>20) & all(H1 > 0.75*m) & all(H1 < 1.25*m)
}
MetropolisUpdate <- function(y,s,w, query, len_alphabet = 4)
{
x <- query
y_new <- Neighbor(y, len_alphabet)
s_new <- pairwiseAlignmentSSW(y_new, x)
#alpha <- w[s_new]-w[s]
alpha <- w[s_new]/w[s]
if(runif(1)< alpha)
return(list(y_new, s_new))
else
return(list(y,s))
}
WangLandau <- function(w, phi, phiFinal,Smax, Smin, Nsim, query, subject, len_alphabet)
{
x <- query
y <- subject
s <- pairwiseAlignmentSSW(y, x)
while(phi > phiFinal)
{
H <- rep(0, Smax)
while(!isflat(H, Smax, Smin))
{
res <- MetropolisUpdate(y, s, w, query, len_alphabet)
y <- res[[1]]
s <- res[[2]]
H[s] <- H[s] + 1
#w[s] <- w[s] - phi
w[s] <- w[s]/phi
}
#w <- w-max(w)
#phi <- phi/2
phi <- sqrt(phi)
print(H)
}
return(w)
}
######## Параметры ########
l = 5 # длина строки
#query <- GenerateDNAseq(l) # что ищем, фиксированный
letters <- c("A", "T", "C", "G")
ssubject <- sample(x = letters, size = l, replace = TRUE)
subject <- paste(ssubject, collapse = '')
query <- "ACGTG"
#alphabet <- alphabet(query, baseOnly=TRUE)
len_alphabet <- 4
Smin <- 1 # мин значение score
Smax <- l # макс значение score
Nsim <- 10^6 # количество итераций в генерации выборки
weight<- rep(1, Smax)
weight_log <- rep(0, Smax) # веса для WangLandau
phi <- exp(0.1)
#phi_log <- -0.1
phi_log <- 0.1
phiFinal <- exp(0.0002)
phiFinal_log <- 0.0002
mat <- nucleotideSubstitutionMatrix(match = 1, mismatch = -3, baseOnly = TRUE)
gapOpening = 12
gapExtension = 1
########## Sampling ############
########## Wang-Landau #########
#weight.wl <- WangLandau(w = weight, phi, phiFinal, Smax, Smin, Nsim, query, subject, len_alphabet)
# s <- rep(0, Nsim)
# #H <- rep(0, Smax)
# y <- subject
# s[1] <- pairwiseAlignmentSSW(y, query)
# for(j in 2:Nsim)
# {
#
# res <- MetropolisUpdate(y, s[j-1], weight.wl, query, len_alphabet)
# y <- res[[1]]
# s[j] <- res[[2]]
# #H[s] <- H[s] + 1
# print(j)
# }
#write(s, "WL_new", ncolumns = 1)
#write(weight.wl, "weight.wl")
# ##### Monte-Carlo ######
# x <- query
# resSample = rep(0, Nsim)
# for (i in 1:Nsim)
# {
# ssubject <- sample(x = letters, size = l, replace = TRUE)
# y <- paste(ssubject, collapse = '')
# #res <- pairwiseAlignment(y,x, substitutionMatrix = mat, type = "local", gapOpening=12, gapExtension=1)
# resSample[i] <- pairwiseAlignmentSSW(y, x)
# print(i)
# }
#write(resSample, "MC_new", ncolumns = 1)
#resWL <- read.table("WL_new")
resWL <- read.table("ScoreWL")
weight.wl <- c(9.296220e-11, 6.467032e-11, 3.392456e-10, 3.435640e-09, 2.993556e-08)
resSample <- read.table("ScoreSample")
i = 1
resWL <- resWL[1:(i+4) == (i+4),]
#resWL <- s
#weight.wl <- 1/as.vector(prob.sample)
#weight.wl <- exp(weight.wl)
hist <- table(resWL)
const.wl <- sum(hist/weight.wl)
prob.wl <- (1/const.wl)*(hist/weight.wl)
prob2 <- 1/weight.wl/sum(1/weight.wl)
barplot(prob.wl, main = "Scores with weights", col=rgb(0,0,1,1/4))
hist.sample <- table(resSample)
prob.sample <- hist.sample/sum(hist.sample)
barplot(prob.sample,add = TRUE, col=rgb(0,1,0,1/4))
######## Conf intervals ########
#MC
conf.mc <- function(z, alpha = 0.05)
{
confUp <- z + qnorm(1-alpha/2)*sqrt(z*(1-z)/Nsim)
conftDown <- z - qnorm(1-alpha/2)*sqrt(z*(1-z)/Nsim)
c(z,conftDown, confUp)
}
se.bm <- function(x, g = function(x) x) {
n <- length(x)
b <- floor(sqrt(n))
a <- floor(n / b)
y <- sapply(1:a, function(k) mean(g(x[((k - 1) * b + 1):(k * b)])))
gx <- g(x)
mu.hat <- mean(gx)
var.hat <- b * sum((y - mu.hat)^2) / (a - 1)
se <- sqrt(var.hat / n)
list(mu = mu.hat, se.mean = se, var = var.hat)
}
#WL
conf.w <- function(x, w, const)
{
df.conf <- matrix(data = 0,nrow = 5, ncol = 3)
for (i in 1:l)
{
tmp <- se.bm(t(x), g =function(x) (Nsim/const)*ifelse(x == i, 1, 0)/w[i])
se <- tmp$se.mean
m <-tmp$mu
df.conf[i,] <- c(m, m - se, m + se)
}
return(df.conf)
}
conf.prob.sample <- lapply(as.vector(prob.sample), conf.mc)
ci.sample <- cbind(x= c(rep("Sample",5)), as.data.frame(t(as.data.frame(conf.prob.sample)), row.names = 1))
#ci.wl <-cbind(x=c(rep("WL",5)), as.data.frame(conf.w(resWL, weight.wl, const.wl)))
conf.prob.wl <- lapply(as.vector(prob.wl), conf.mc)
ci.wl2<- cbind(x= c(rep("WL",5)), as.data.frame(t(as.data.frame(conf.prob.wl)), row.names = 1))
ci.wl <- ci.wl2
ci <- rbind(ci.sample, ci.wl)
lengthCI <- ci[,4] - ci[,3]
ci <- cbind(ci, lengthCI)
colnames(ci) <- c("x","PropScore", "LowerCI", "UpperCI", "lengthCI")
####### Plots #######
require(ggplot2)
## Loading required package: ggplot2

plot.CI <- function(p1, p2,num_score)
{
ggplot(ci[c(p1, p2),], aes(x = x,y = PropScore)) +
geom_point(size = 4) +
geom_errorbar(aes(ymax = UpperCI, ymin = LowerCI))+
ggtitle(paste("Score = ", num_score))
}
for (i in 1:l)
{
print(plot.CI(i, i+l,i))
print(ci[c(i, i+l),])
}

## x PropScore LowerCI UpperCI lengthCI
## 1 Sample 0.3150690 0.3141585 0.3159795 0.001820976
## 6 WL 0.3147905 0.3138802 0.3157007 0.001820541

## x PropScore LowerCI UpperCI lengthCI
## 2 Sample 0.5592280 0.5582549 0.5602011 0.001946164
## 7 WL 0.5584439 0.5574706 0.5594172 0.001946529

## x PropScore LowerCI UpperCI lengthCI
## 3 Sample 0.1106030 0.1099883 0.1112177 0.001229446
## 8 WL 0.1116901 0.1110727 0.1123074 0.001234717

## x PropScore LowerCI UpperCI lengthCI
## 4 Sample 0.01405000 0.01381932 0.01428068 0.0004613640
## 9 WL 0.01407937 0.01384845 0.01431029 0.0004618391

## x PropScore LowerCI UpperCI lengthCI
## 5 Sample 0.0010500000 0.0009865233 0.001113477 0.0001269535
## 10 WL 0.0009962239 0.0009343923 0.001058055 0.0001236631
# my.bm <- function(x)
# {
# n <- length(x)
# n_ <- n/2
# x_ <- rep(0, n_)
# for (i in 1:n_)
# x_[i] <- 0.5*(x[2*i-1] + x[2*i])
# c0 <- (1/n_)*sum(x_ - mean(x_))
# sigma <- c0/(n_ - 1)
# return(sigma)
# }