Chase Rosendale, Lei Wang, Ryan Williams
September 8, 2017
The Children’s Television Workshop is interested in finding whether Sesame Street is effective at improving children between 3-5 years old in their knowledge of letters, numbers, and forms. The data of interest that was collected includes information on the test children’s age, sex, and population site. Each child took a pretest and a post-test for their knowledge of letters, numbers, and forms.
The children were chosen from five different populations of interest: - Three to five year old disadvantaged children from inner city areas in various parts of the country - Four year old advantaged suburban children - Advantaged rural children - Disadvantaged rural children - Disadvantaged Spanish-speaking children
There were 14 variables of interest that were collected in the study. These variables included the explanatory variables: site, age, sex, view category, setting, and viewing encouraged. The pretest and post-test scores for letters, numbers, and forms were used to create the three response variables; numbers improvement, letters improvement, and form improvement. These variables were calculated using the difference of the post-test and the pretest divided by the maximum score.
| Variable | Description | Type | Levels | |
|---|---|---|---|---|
| 1 | Site | Populations of Interest, listed in Appendix | Nominal | 5 Levels, each level is a different population of interest |
| 2 | Sex | Male 1, Female 2 | Dichotomous | 2 Levels |
| 3 | Age | Age in months | Numerical Discrete | Ranges from 34-69 |
| 4 | Viewing Category | Viewing categories from rarely watched to watched more than 5 times a week | Ordinal | Ranges from 1 to 4 |
| 5 | Setting | Setting in which Sesame Street was viewed | Dichotomous | 2 levels: Home 1, School 2 |
| 6 | Viewing Encouraged | Whether children were encouraged to watch | Dichotomous | 2 Levels: Encouraged 1, Not 2 |
| 7 | Pretest Letters | Pretest on knowledge of letters | Numerical Discrete | Ranges from 0-58 |
| 8 | Pretest Numbers | Pretest on knowledge of numbers | Numerical Discrete | Ranges from 0-54 |
| 9 | Pretest Forms | Pretest on knowledge of forms | Numerical Discrete | Ranges from 0-20 |
| 10 | Posttest Letters | Posttest knowledge of letters | Numerical Discrete | Ranges from 0-58 |
| 11 | Posttest Numbers | Posttest knowledge of numbers | Numerical Discrete | Ranges from 0-54 |
| 12 | Posttest Forms | Posttest knowledge of forms | Numerical Discrete | Ranges from 0-20 |
| 13 | Numbers Improvement | Improvement in numbers as a proportion of the maximum score | Numerical Continuous | Ranges from -1 to 1 |
| 14 | Letters Improvement | Improvement in letters as a proportion of the maximum score | Numerical Continuous | Ranges from -1 to 1 |
| 15 | Forms Improvement | Improvement in forms as a proportion of the maximum score | Numerical Continuous | Ranges from -1 to 1 |
This report was created using RMarkdown with a Slidy Presentation Output
Requirements to reproduce this report independantly
require(car)
require(ISwR)
require(dplyr)
require(leaps)
require(ggplot2)
require(gdata)
data1 <- read.csv("E:/OneDrive/STAT 470/Sesame_Street_Case_Study_files/sesame.csv", header = TRUE)
attach(data1)let <- ggplot(data2, aes(x=factor(viewcat), y=postlet))
let + geom_boxplot() + geom_count(color="blue") + ggtitle("Boxplot with overlayed Density Plot") + guides(size = guide_legend("Density"))form <- ggplot(data2, aes(x=factor(viewcat), y=postform))
form + geom_boxplot() + geom_count(color="blue") + ggtitle("Boxplot with overlayed Density Plot") + guides(size = guide_legend("Density"))numb <- ggplot(data2, aes(x=factor(viewcat), y=postnumb))
numb + geom_boxplot() + geom_count(color="blue") + ggtitle("Boxplot with overlayed Density Plot") + guides(size = guide_legend("Density"))difflet <- postlet - prelet #Creating new variable for difference between post and pre scores
dlet <- ggplot(data2, aes(x=factor(viewcat), y=difflet))
dlet + geom_boxplot() + geom_count(color="blue") + ggtitle("Boxplot with overlayed Density Plot") + guides(size = guide_legend("Density"))diffform <- postform - preform #Creating new variable for difference between post and pre scores
dform <- ggplot(data2, aes(x=factor(viewcat), y=diffform))
dform + geom_boxplot() + geom_count(color="blue") + ggtitle("Boxplot with overlayed Density Plot") + guides(size = guide_legend("Density"))diffnumb <- postnumb - prenumb #Creating new variable for difference between post and pre scores
dnumb <- ggplot(data2, aes(x=factor(viewcat), y=diffnumb))
dnumb + geom_boxplot() + geom_count(color="blue") + ggtitle("Boxplot with overlayed Density Plot") + guides(size = guide_legend("Density"))| Variable | N | Mean | Standard.Deviation | Minimum | Maximum | |
|---|---|---|---|---|---|---|
| 1 | Letter Improvement | 240 | 0.18628 | 0.19255 | -0.37931 | 0.7069 |
| 2 | Number Improvement | 240 | 0.16667 | 0.17954 | -0.64815 | 0.61111 |
| 3 | Forms Improvement | 240 | 0.1906 | 0.18732 | -0.5 | 0.85 |
plot(prenumb,diffnumb)plot(preform,diffform)plot(prelet, difflet)## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 1.602861 Df = 1 p = 0.2054982
## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 1.127897 Df = 1 p = 0.2882244
## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 0.03792127 Df = 1 p = 0.8456013
## GVIF Df GVIF^(1/(2*Df))
## prenumb 3.190851 1 1.786295
## preform 2.177062 1 1.475487
## prelet 2.192919 1 1.480851
## factor(site) 1.823159 4 1.077961
## age 1.451306 1 1.204702
## sex 1.031028 1 1.015396
## viewenc 1.389976 1 1.178972
## regular 1.527805 1 1.236044
## setting 1.366760 1 1.169085
## GVIF Df GVIF^(1/(2*Df))
## prenumb 3.190851 1 1.786295
## preform 2.177062 1 1.475487
## prelet 2.192919 1 1.480851
## factor(site) 1.823159 4 1.077961
## age 1.451306 1 1.204702
## sex 1.031028 1 1.015396
## viewenc 1.389976 1 1.178972
## regular 1.527805 1 1.236044
## setting 1.366760 1 1.169085
## GVIF Df GVIF^(1/(2*Df))
## prenumb 3.190851 1 1.786295
## preform 2.177062 1 1.475487
## prelet 2.192919 1 1.480851
## factor(site) 1.823159 4 1.077961
## age 1.451306 1 1.204702
## sex 1.031028 1 1.015396
## viewenc 1.389976 1 1.178972
## regular 1.527805 1 1.236044
## setting 1.366760 1 1.169085
testmodel <- lm(diffform ~ factor(site) + sex + age + factor(viewcat) + setting + viewenc +
agecat + encour, data = data2)#Form model
#regsubsets generates the best model for the given variables
MSE <- (summary(testmodel)$sigma)^2 #We'll need the MSE
step(testmodel, scale = MSE, direction = "both")
#Step eliminates the insignificant factors from the model
diffformmodel <- lm(diffform ~ factor(viewcat), data = data2)testmodel <- lm(difflet ~ factor(site) + sex + age + factor(viewcat) + setting + viewenc +
agecat + encour, data = data2)#Form model
#regsubsets generates the best model for the given variables
MSE <- (summary(testmodel)$sigma)^2 #We'll need the MSE
step(testmodel, scale = MSE, direction = "both")
#Step eliminates the insignificant factors from the model
diffletmodel <- lm(difflet ~ factor(site) + factor(viewcat) + viewenc +
agecat, data = data2)testmodel <- lm(diffnumb ~ factor(site) + sex + age + factor(viewcat) + setting + viewenc +
agecat + encour, data = data2)#Form model
#regsubsets generates the best model for the given variables
MSE <- (summary(testmodel)$sigma)^2 #We'll need the MSE
step(testmodel, scale = MSE, direction = "both")
#Step eliminates the insignificant factors from the model
diffnumbmodel <- lm(diffnumb ~ factor(viewcat), data = data2)testmodel <- lm(postnumb ~ ., data = data2)#Form model
#regsubsets generates the best model for the given variables
MSE <- (summary(testmodel)$sigma)^2 #We'll need the MSE
step(testmodel, scale = MSE, direction = "both")
#Step eliminates the insignificant factors from the modeltestmodel <- lm(postform ~ ., data = data2)#Form model
#regsubsets generates the best model for the given variables
MSE <- (summary(testmodel)$sigma)^2 #We'll need the MSE
step(testmodel, scale = MSE, direction = "both")
#Step eliminates the insignificant factors from the modeltestmodel <- lm(postlet ~ ., data = data2)#Form model
#regsubsets generates the best model for the given variables
MSE <- (summary(testmodel)$sigma)^2 #We'll need the MSE
step(testmodel, scale = MSE, direction = "both")
#Step eliminates the insignificant factors from the modelThese are some of the other models we tried
modelform10 <- lm(diffform ~ factor(site), data = data2)
modellet10 <- lm(difflet ~ factor(site), data = data2)
modelnumb11 <- lm(postnumb ~ log(prenumb) + factor(viewcat), data = data2)
modelform11 <- lm(postform ~ log(preform) + factor(viewcat), data = data2)
modellet11 <- lm(postlet ~ log(prelet) + factor(viewcat), data = data2)modelnumb <- lm(diffnumb ~ factor(site,levels=c(2,3,1,4,5))+age+sex+viewenc+regular+setting+prenumb+prelet+preform, data = data2)
modelform <- lm(diffform ~ factor(site,levels=c(2,3,1,4,5))+age+sex+viewenc+regular+setting+prenumb+prelet+preform, data = data2)
modellet <- lm(difflet ~ factor(site,levels=c(2,3,1,4,5))+age+sex+viewenc+regular+setting+prenumb+prelet+preform, data = data2)cookdis <- cooks.distance(modelnumb) #Create variable for cook's distance
plot(cookdis, pch="*", cex=2, main="Influential Obs for Postnumb Model")
#Plot cook's distance
abline(h = 4*mean(cookdis, na.rm=T), col="red") #Add cutoff line
text(x=1:length(cookdis)+1, y=cookdis, labels=ifelse(cookdis>4*mean(cookdis, na.rm=T),names(cookdis),""), col="red") #Label any points above the cutoff linecookdis <- cooks.distance(modelform) #Create variable for cook's distance
plot(cookdis, pch="*", cex=2, main="Influential Obs for Postform Model")
#Plot cook's distance
abline(h = 4*mean(cookdis, na.rm=T), col="red") #Add cutoff line
text(x=1:length(cookdis)+1, y=cookdis, labels=ifelse(cookdis>4*mean(cookdis, na.rm=T),names(cookdis),""), col="red") #Label any points above the cutoff linecookdis <- cooks.distance(modellet) #Create variable for cook's distance
plot(cookdis, pch="*", cex=2, main="Influential Obs for Postnumb Model")
#Plot cook's distance
abline(h = 4*mean(cookdis, na.rm=T), col="red") #Add cutoff line
text(x=1:length(cookdis)+1, y=cookdis, labels=ifelse(cookdis>4*mean(cookdis, na.rm=T),names(cookdis),""), col="red") #Label any points above the cutoff line## [1] 0.2392241
## [1] 0.3572446
## [1] 0.4020194
## [1] 0.2502526
## [1] 0.4154165
## [1] 0.4563963
As you can see, with the influentials removed, the models have a better correlation to the data, this being true, we will continue to report the models with both the influenctials removed and not removed.
x <- 1:nrow(data2)
ggplotRegression <- function (fit) {
ggplot(fit$model, aes_string(x, y = names(fit$model)[1])) +
geom_point() +
stat_smooth(method = "lm", col = "red") +
labs(title = "Regression Plot")
}
#Here we've created a function that plots the
#model results to the risk values so we can see if we can improve our
#model in any way as well as use this function for future models
#We can apply our model to this functionggplotRegression(modelnumb) ggplotRegression(modelform)ggplotRegression(modellet)plot(log(prelet) ~ postlet)plot(log(preform) ~ log(postform))plot(log(prenumb) ~ postnumb)Letter Improvement:
> sitemodellet<-lm(difflet~factor(site),data=sesame_data_NOut)
> summary(sitemodellet)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.20125 0.02223 9.051 < 2e-16 ***
factor(site)2 0.12953 0.03159 4.100 5.77e-05 ***
factor(site)3 -0.08085 0.03078 -2.627 0.00922 **
factor(site)4 -0.07769 0.03379 -2.299 0.02241 *
factor(site)5 -0.03459 0.04478 -0.772 0.44067
Site 2,3,4 are significantly different from Site 1 when considering no other factors.
Number Improvement:
> sitemodelnum<-lm(diffnum~factor(site),data=sesame_data_NOut)
> summary(sitemodelnum)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.186195 0.021247 8.763 4.77e-16 ***
factor(site)2 0.040828 0.030187 1.353 0.1776
factor(site)3 -0.021072 0.029415 -0.716 0.4745
factor(site)4 -0.061857 0.032290 -1.916 0.0567 .
factor(site)5 0.001048 0.042788 0.024 0.9805
No significance
Form Improvement:
> sitemodelform<-lm(diffform~factor(site),data=sesame_data_NOut)
> summary(sitemodelform)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.20125 0.02223 9.051 < 2e-16 ***
factor(site)2 0.12953 0.03159 4.100 5.77e-05 ***
factor(site)3 -0.08085 0.03078 -2.627 0.00922 **
factor(site)4 -0.07769 0.03379 -2.299 0.02241 *
factor(site)5 -0.03459 0.04478 -0.772 0.44067
Site 2,3,4 are significantly different from Site 1 when considering no other factors.
Full Model Selection:
Number Improvement:
Lowest AIC:
diffnum ~ factor(site) + factor(viewcat) + age + sex + viewenc + setting
Form Improvement:
diffform ~ factor(site) + factor(viewcat) + age + sex + viewenc + setting
Letter Improvement:
difflet ~ factor(site) + factor(viewcat) + age + sex + viewenc + setting
model<-lm(diffform~factor(site)+sex+age+factor(viewcat)+setting+viewenc,data=sesame_data_NOut)
step<- stepAIC(model,diection="both")
fullmodel_num<-lm(diffnum~factor(site)+factor(viewcat)+ age +sex +viewenc + setting, data= sesame_data_NOut)
> step<- stepAIC(fullmodel_num,diection="both")
Checking for significance of Regular:
> regularnum<-lm(diffnum~regular,data=sesame_data)
> summary(regularnum)
Call:
lm(formula = diffnum ~ regular, data = sesame_data)
Residuals:
Min 1Q Median 3Q Max
-45.478 -5.814 0.407 6.407 22.522
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.593 1.279 3.591 0.000399 ***
regular 5.886 1.453 4.052 6.88e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 9.397 on 238 degrees of freedom
Multiple R-squared: 0.06454, Adjusted R-squared: 0.06061
F-statistic: 16.42 on 1 and 238 DF, p-value: 6.876e-05
> regularlet<-lm(difflet~regular,data=sesame_data)
> summary(regularlet)
Call:
lm(formula = difflet ~ regular, data = sesame_data)
Residuals:
Min 1Q Median 3Q Max
-35.220 -7.220 -1.481 5.584 27.780
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.481 1.394 1.780 0.0764 .
regular 10.739 1.584 6.781 9.37e-11 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 10.25 on 238 degrees of freedom
Multiple R-squared: 0.1619, Adjusted R-squared: 0.1584
F-statistic: 45.98 on 1 and 238 DF, p-value: 9.366e-11
> regularform<-lm(diffform~regular,data=sesame_data)
> summary(regularform)
Call:
lm(formula = diffform ~ regular, data = sesame_data)
Residuals:
Min 1Q Median 3Q Max
-14.1129 -2.1129 -0.1129 2.2222 12.8871
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.7778 0.5052 5.499 9.85e-08 ***
regular 1.3351 0.5738 2.327 0.0208 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.712 on 238 degrees of freedom
Multiple R-squared: 0.02224, Adjusted R-squared: 0.01813
F-statistic: 5.413 on 1 and 238 DF, p-value: 0.02083
Checking for setting/viewenc
> settingnum<-lm(diffnum~setting+viewenc,data=sesame_data)
> settinglet<-lm(difflet~setting+viewenc,data=sesame_data)
> settingform<-lm(diffform~setting+viewenc,data=sesame_data)
Num: neither significant.
Let: viewenc is significant
Form: Neither significant
Checking for Site significance: Use different sites for the baseline.
> sitenum<-lm(diffnum~factor(site),data=sesame_data)
> sitelet<-lm(difflet~factor(site),data=sesame_data)
> siteform<-lm(diffform~factor(site),data=sesame_data)
> sitenum<-lm(diffnum~factor(site,levels=c(3,2,1,4,5)),data=sesame_data)
Finding the final model:
Number Improvement:
>final_model_num<-lm(diffnum~factor(site,levels=c(2,3,1,4,5))+age+sex+viewenc+regular+setting+prenumb+prelet+preform,data=sesame_data)
> step(final_model_num)
Letter Improvement:
final_model_let<-lm(difflet~factor(site,levels=c(2,3,1,4,5))+age+sex+viewenc+regular+setting+prenumb+prelet+preform,data=sesame_data)
step(final_model_let)
Form Improvement:
final_model_form<-lm(diffform~factor(site,levels=c(2,3,1,4,5))+age+sex+viewenc+regular+setting+prenumb+prelet+preform,data=sesame_data)
> step(final_model_form)
>num_final<-lm(diffnum~factor(site)+age+viewenc+regular+setting+prenumb+preform,data=sesame_data)
> summary(num_final)data1## id site sex age viewcat setting viewenc prebody prelet preform
## 1 1 1 1 66 1 2 1 16 23 12
## 2 2 1 2 67 3 2 1 30 26 9
## 3 3 1 1 56 3 2 2 22 14 9
## 4 4 1 1 49 1 2 2 23 11 10
## 5 5 1 1 69 4 2 2 32 47 15
## 6 6 1 2 54 3 2 2 29 26 10
## 7 7 1 2 47 3 2 2 23 12 11
## 8 8 1 1 51 2 2 1 32 48 19
## 9 9 1 1 69 4 2 1 27 44 18
## 10 10 1 2 53 3 2 1 30 38 17
## 11 11 1 2 58 2 2 2 25 48 14
## 12 12 1 2 58 4 2 2 21 25 13
## 13 13 1 2 49 1 2 2 28 8 9
## 14 14 1 1 64 2 2 1 26 11 15
## 15 15 1 2 58 2 2 1 23 15 9
## 16 16 1 1 49 3 2 1 25 12 17
## 17 17 1 1 57 2 2 1 25 15 13
## 18 18 1 1 45 4 2 1 16 12 8
## 19 19 1 1 45 3 2 1 25 16 12
## 20 20 1 1 60 3 2 2 19 19 8
## 21 21 1 2 65 4 2 1 29 24 14
## 22 22 1 1 44 4 1 1 25 15 17
## 23 23 1 2 38 3 1 1 20 9 2
## 24 24 1 1 35 4 1 1 11 6 8
## 25 25 1 2 42 2 1 1 15 7 8
## 26 26 1 2 50 2 1 1 26 14 10
## 27 27 1 1 61 4 2 2 28 42 16
## 28 28 1 2 34 4 1 1 17 13 7
## 29 29 1 1 60 3 1 2 23 13 9
## 30 30 1 2 39 2 1 1 11 5 5
## 31 31 1 1 39 3 1 1 24 4 11
## 32 32 1 2 41 2 1 1 24 8 3
## 33 33 1 2 55 3 1 1 31 15 17
## 34 34 1 2 42 3 1 1 23 11 7
## 35 35 1 1 50 4 1 1 18 17 12
## 36 36 1 1 58 2 1 1 13 12 6
## 37 37 1 2 59 3 1 2 27 7 13
## 38 38 1 2 36 1 1 2 11 12 9
## 39 39 1 1 51 2 1 1 32 16 16
## 40 40 1 1 51 2 1 1 31 18 13
## 41 41 1 1 48 3 1 1 13 14 8
## 42 42 1 1 43 2 1 1 17 13 14
## 43 43 1 2 35 3 1 2 23 12 8
## 44 44 1 2 36 1 1 2 11 2 6
## 45 45 1 2 39 2 1 2 20 18 6
## 46 46 1 1 45 4 1 2 14 13 9
## 47 47 1 1 58 3 1 2 30 38 15
## 48 48 1 2 38 3 1 1 13 10 7
## 49 49 1 2 57 4 1 1 26 15 11
## 50 50 1 1 49 3 1 2 26 35 10
## 51 51 1 1 55 1 2 2 24 11 10
## 52 52 1 2 44 4 2 2 25 39 18
## 53 53 1 1 56 1 2 2 13 11 6
## 54 54 1 2 48 2 2 2 17 11 9
## 55 55 1 1 50 2 2 2 16 10 8
## 56 56 1 1 52 1 2 2 16 15 6
## 57 57 1 2 51 2 2 1 24 14 10
## 58 58 1 2 58 1 2 2 25 17 17
## 59 59 1 2 48 3 2 2 13 10 10
## 60 60 1 1 54 4 2 2 16 13 10
## 61 61 2 1 52 4 2 2 20 35 15
## 62 62 2 2 48 1 2 2 20 12 11
## 63 63 2 1 55 4 2 2 28 13 10
## 64 64 2 1 55 2 2 2 23 16 5
## 65 65 2 2 55 2 1 2 30 27 11
## 66 66 2 2 56 1 1 1 26 18 10
## 67 67 2 2 50 3 2 1 31 15 10
## 68 68 2 1 51 3 2 1 28 19 14
## 69 69 2 1 58 3 2 2 30 14 17
## 70 70 2 2 55 4 2 2 27 10 10
## 71 71 2 2 41 4 1 2 24 22 14
## 72 72 2 2 51 4 1 2 20 13 11
## 73 73 2 1 52 4 2 1 29 13 9
## 74 74 2 2 54 3 2 1 30 26 13
## 75 75 2 1 47 4 1 1 19 12 11
## 76 76 2 1 50 4 1 1 31 30 15
## 77 77 2 2 55 4 1 1 31 13 18
## 78 78 2 1 50 3 2 1 32 27 13
## 79 79 2 2 57 2 2 1 31 19 14
## 80 80 2 2 55 4 1 2 20 12 9
## 81 81 2 2 55 4 1 2 26 14 8
## 82 82 2 1 50 3 2 1 30 44 15
## 83 83 2 1 52 3 2 1 26 13 11
## 84 84 2 2 45 2 2 1 28 12 9
## 85 85 2 2 52 3 2 1 24 14 8
## 86 86 2 1 53 4 1 1 26 17 15
## 87 87 2 2 53 4 2 2 29 10 17
## 88 88 2 2 53 2 2 2 23 12 12
## 89 89 2 2 56 3 1 2 28 29 11
## 90 90 2 2 54 4 2 2 32 46 15
## 91 91 2 1 50 2 2 1 22 17 8
## 92 92 2 1 50 3 1 1 29 25 14
## 93 93 2 2 53 4 1 1 25 17 12
## 94 94 2 1 45 4 1 1 21 16 12
## 95 95 2 2 56 4 1 1 32 22 15
## 96 96 2 1 53 3 1 1 31 14 16
## 97 97 2 2 46 4 1 1 22 28 14
## 98 98 2 2 46 2 1 2 30 18 14
## 99 99 2 1 50 3 1 2 18 13 8
## 100 0 2 2 47 1 1 2 17 10 5
## 101 101 2 1 56 2 2 1 27 11 15
## 102 102 2 2 46 3 1 1 27 13 13
## 103 103 2 2 45 4 1 1 21 23 14
## 104 104 2 2 46 4 1 1 19 17 4
## 105 105 2 2 47 3 1 1 31 9 14
## 106 106 2 1 52 2 2 1 26 16 12
## 107 107 2 2 52 4 2 1 24 15 12
## 108 108 2 1 56 2 1 1 21 22 12
## 109 109 2 1 48 4 1 1 28 22 13
## 110 110 2 1 49 3 1 1 25 16 13
## 111 111 2 2 55 4 2 1 32 8 13
## 112 112 2 2 45 3 1 1 22 15 12
## 113 113 2 1 45 3 1 1 32 16 14
## 114 114 2 2 48 4 1 1 31 6 8
## 115 115 2 1 58 1 1 2 19 14 12
## 116 116 3 1 55 2 1 1 20 16 7
## 117 117 3 2 48 1 1 2 20 15 5
## 118 118 3 2 52 3 1 1 14 6 3
## 119 119 3 2 58 1 1 1 20 11 5
## 120 120 3 1 50 3 2 2 13 12 5
## 121 121 3 1 58 3 2 2 22 19 11
## 122 122 3 2 49 4 2 2 14 13 7
## 123 123 3 1 56 4 2 2 24 17 9
## 124 124 3 1 50 1 1 2 7 14 4
## 125 125 3 2 49 1 1 1 20 18 3
## 126 126 3 1 46 2 1 1 15 14 8
## 127 127 3 1 57 2 1 1 26 14 9
## 128 128 3 1 44 1 2 2 12 9 7
## 129 129 3 2 41 2 2 2 16 14 9
## 130 130 3 2 58 4 2 1 17 9 11
## 131 131 3 2 60 4 2 1 31 19 11
## 132 132 3 2 40 2 1 1 12 14 3
## 133 133 3 2 37 2 1 1 7 4 6
## 134 134 3 1 45 1 1 1 12 5 5
## 135 135 3 1 60 3 1 1 17 18 9
## 136 136 3 1 52 2 1 2 18 13 9
## 137 137 3 2 46 4 1 1 20 12 4
## 138 138 3 2 60 4 1 1 23 16 9
## 139 139 3 1 60 3 1 1 17 11 10
## 140 140 3 1 59 3 1 1 7 16 11
## 141 141 3 2 52 3 1 1 29 20 8
## 142 142 3 1 60 3 1 1 29 13 12
## 143 143 3 2 56 2 1 1 21 12 12
## 144 144 3 2 54 2 2 2 18 28 9
## 145 145 3 2 61 3 1 1 13 12 8
## 146 146 3 2 61 3 1 1 29 18 12
## 147 147 3 2 51 3 1 1 17 15 5
## 148 148 3 1 49 4 2 1 19 17 7
## 149 149 3 1 52 2 1 1 22 13 10
## 150 150 3 2 55 3 2 1 25 13 12
## 151 151 3 2 60 4 2 1 28 10 10
## 152 152 3 2 43 1 2 2 14 9 5
## 153 153 3 1 55 3 2 1 14 7 9
## 154 154 3 2 52 4 2 1 18 11 9
## 155 155 3 2 56 1 2 1 26 24 13
## 156 156 3 1 56 4 1 1 24 11 11
## 157 157 3 2 47 2 1 1 20 19 9
## 158 158 3 2 56 2 1 1 17 18 8
## 159 159 3 2 52 3 1 1 28 15 13
## 160 160 3 2 51 4 1 1 23 14 11
## 161 161 3 1 51 1 1 1 7 13 6
## 162 162 3 2 53 3 1 1 15 15 8
## 163 163 3 1 50 4 1 1 26 11 14
## 164 164 3 2 59 4 1 1 16 10 8
## 165 165 3 1 53 3 1 1 14 12 7
## 166 166 3 1 55 3 1 1 15 10 7
## 167 167 3 1 57 1 1 1 6 13 2
## 168 168 3 1 58 2 1 1 16 5 5
## 169 169 3 1 44 3 1 1 10 12 4
## 170 170 3 1 39 1 1 2 14 12 4
## 171 171 3 1 53 4 2 1 21 17 12
## 172 172 3 2 52 4 1 1 23 10 9
## 173 173 3 1 57 3 1 2 25 11 10
## 174 174 3 2 40 3 1 1 11 10 7
## 175 175 3 2 47 2 1 1 16 13 7
## 176 176 3 1 51 2 1 1 25 19 11
## 177 177 3 1 48 2 1 1 11 7 4
## 178 178 3 2 49 1 1 2 15 16 6
## 179 179 3 1 50 2 1 1 12 8 5
## 180 180 4 2 53 1 2 2 10 13 4
## 181 181 4 2 52 1 2 2 13 15 8
## 182 182 4 1 51 1 2 2 19 12 9
## 183 183 4 1 52 1 2 2 20 16 12
## 184 184 4 1 46 1 2 2 13 3 3
## 185 185 4 2 51 1 2 2 21 19 12
## 186 186 4 2 47 1 2 2 19 12 13
## 187 187 4 2 51 3 2 1 25 13 12
## 188 188 4 2 54 1 2 1 8 20 5
## 189 189 4 2 54 2 2 1 12 4 9
## 190 190 4 1 57 2 2 1 24 11 10
## 191 191 4 1 53 2 2 1 17 12 8
## 192 192 4 2 50 2 2 1 20 16 8
## 193 193 4 2 57 1 2 2 28 23 16
## 194 194 4 2 58 1 2 2 31 30 12
## 195 195 4 2 58 1 2 2 28 29 9
## 196 196 4 2 53 1 2 2 19 19 14
## 197 197 4 2 49 1 2 2 20 17 7
## 198 198 4 2 51 1 2 2 10 1 2
## 199 199 4 1 58 1 2 2 22 13 9
## 200 200 4 2 51 1 2 2 18 12 4
## 201 201 4 2 53 1 2 2 21 17 9
## 202 202 4 2 56 3 2 1 29 17 17
## 203 203 4 2 51 3 1 1 19 11 10
## 204 204 4 1 47 1 1 1 23 12 11
## 205 205 4 2 54 4 1 1 23 14 12
## 206 206 4 1 54 4 1 1 17 15 6
## 207 207 4 2 46 1 1 1 22 14 7
## 208 208 4 2 52 2 1 1 20 15 14
## 209 209 4 2 48 1 1 1 24 18 5
## 210 210 4 1 49 2 1 2 17 21 7
## 211 211 4 1 58 1 1 2 14 7 3
## 212 212 4 1 46 3 1 2 18 13 10
## 213 213 4 1 57 1 1 2 27 19 11
## 214 214 4 1 48 4 1 2 27 12 15
## 215 215 4 2 52 2 1 2 23 8 9
## 216 216 4 1 57 2 1 1 29 17 12
## 217 217 4 1 46 3 1 1 18 9 10
## 218 218 4 1 55 2 1 1 14 12 8
## 219 219 4 1 44 3 1 1 8 11 6
## 220 220 4 1 56 1 2 2 26 15 12
## 221 221 4 2 44 2 1 1 14 14 12
## 222 222 4 1 59 4 1 1 28 17 12
## 223 223 5 1 48 2 1 1 16 8 8
## 224 224 5 1 56 2 1 1 22 17 11
## 225 225 5 2 58 2 1 1 20 18 8
## 226 226 5 2 53 1 1 1 15 11 2
## 227 227 5 2 53 1 1 1 26 16 8
## 228 228 5 2 65 1 1 2 15 16 5
## 229 229 5 1 46 1 1 2 15 5 5
## 230 230 5 1 49 1 1 2 19 12 12
## 231 231 5 1 55 1 1 2 21 40 8
## 232 232 5 2 46 2 1 1 20 9 6
## 233 233 5 2 58 4 1 1 30 55 19
## 234 234 5 1 47 4 1 1 18 13 9
## 235 235 5 1 53 4 1 1 26 25 14
## 236 236 5 2 51 2 1 1 30 15 8
## 237 237 5 1 49 4 1 1 17 16 12
## 238 238 5 1 43 2 1 1 16 13 6
## 239 239 5 2 60 3 1 1 23 16 9
## 240 240 5 1 51 4 1 1 21 11 10
## prenumb prerelat preclasf postbody postlet postform postnumb postrelat
## 1 40 14 20 18 30 14 44 14
## 2 39 16 22 30 37 17 39 14
## 3 9 9 8 21 46 15 40 9
## 4 14 9 13 21 14 13 19 8
## 5 51 17 22 32 63 18 54 14
## 6 33 14 14 27 36 14 39 16
## 7 13 11 12 22 45 12 44 12
## 8 52 15 23 31 47 18 51 17
## 9 42 15 20 32 50 17 48 14
## 10 31 10 17 32 52 19 52 17
## 11 38 16 18 26 52 15 42 10
## 12 29 16 21 17 29 15 40 10
## 13 13 8 12 20 16 9 18 10
## 14 21 10 15 26 28 15 35 16
## 15 16 9 11 28 21 10 22 10
## 16 24 12 18 28 45 14 45 13
## 17 16 10 18 25 24 16 28 8
## 18 11 6 3 25 16 11 17 9
## 19 23 10 13 32 46 18 35 14
## 20 23 14 10 28 50 12 38 12
## 21 41 10 23 29 48 20 51 15
## 22 22 11 16 32 42 19 45 15
## 23 7 8 9 22 23 17 19 15
## 24 16 8 9 22 27 16 20 14
## 25 11 12 7 14 13 7 21 12
## 26 36 13 17 25 18 14 42 13
## 27 40 16 11 24 27 15 20 14
## 28 10 5 11 21 17 13 13 10
## 29 23 11 14 28 20 18 45 14
## 30 5 5 1 27 15 13 9 8
## 31 25 11 17 21 11 12 13 9
## 32 14 8 8 21 17 10 18 9
## 33 45 16 24 32 43 18 46 13
## 34 15 6 7 29 27 14 33 9
## 35 28 12 17 29 41 15 48 12
## 36 10 6 11 29 23 11 27 8
## 37 23 12 10 32 39 18 49 16
## 38 5 5 3 12 12 6 13 9
## 39 34 15 17 21 17 6 21 8
## 40 33 15 14 21 16 11 7 9
## 41 8 10 11 21 22 10 28 8
## 42 13 11 14 24 19 12 22 11
## 43 9 5 5 29 11 8 9 11
## 44 5 2 4 21 6 11 6 6
## 45 4 4 6 19 8 11 22 10
## 46 16 9 12 29 48 17 48 14
## 47 45 14 18 32 48 19 46 14
## 48 8 5 7 26 36 14 20 10
## 49 22 10 15 24 20 18 28 12
## 50 47 13 17 26 13 7 12 11
## 51 18 8 10 20 10 14 23 10
## 52 41 9 21 30 47 20 50 11
## 53 15 10 11 15 13 9 13 10
## 54 14 8 9 26 32 15 27 11
## 55 9 7 6 21 15 17 17 12
## 56 13 11 13 19 14 14 18 7
## 57 20 10 17 28 21 17 36 19
## 58 23 14 15 25 16 19 28 4
## 59 13 9 7 27 15 14 23 11
## 60 10 9 7 19 20 14 19 12
## 61 21 8 20 27 48 19 47 15
## 62 13 7 11 28 19 17 17 11
## 63 29 11 12 30 31 19 45 15
## 64 32 10 13 28 28 15 46 13
## 65 39 12 17 32 40 19 52 17
## 66 30 12 9 29 46 13 44 13
## 67 24 11 20 31 43 18 52 14
## 68 37 13 15 32 47 19 48 15
## 69 37 13 20 28 38 15 36 16
## 70 12 14 16 31 42 16 31 13
## 71 42 14 21 30 49 19 50 14
## 72 22 11 15 27 17 11 20 14
## 73 18 10 10 30 23 17 28 12
## 74 23 10 17 32 42 12 37 12
## 75 16 11 12 28 43 18 38 14
## 76 47 15 19 23 48 19 49 13
## 77 39 15 24 31 51 19 50 14
## 78 29 13 12 31 45 19 53 16
## 79 36 13 11 32 50 17 47 15
## 80 16 11 18 30 30 14 18 12
## 81 24 13 12 30 45 19 43 15
## 82 45 12 11 32 53 19 52 15
## 83 34 12 12 30 45 17 43 13
## 84 16 7 8 28 21 14 32 9
## 85 18 8 7 28 43 12 41 13
## 86 32 13 16 27 37 15 31 14
## 87 23 13 15 32 51 19 48 16
## 88 15 11 17 28 20 15 19 8
## 89 43 13 22 31 32 15 40 15
## 90 48 13 21 32 51 19 50 16
## 91 18 12 14 25 16 14 32 14
## 92 35 15 20 26 36 16 31 8
## 93 30 13 17 29 40 17 40 13
## 94 15 11 17 29 36 19 29 10
## 95 32 11 13 31 46 20 51 14
## 96 29 11 17 32 43 19 42 13
## 97 20 5 15 32 42 13 29 15
## 98 23 11 11 29 33 13 36 8
## 99 14 11 12 19 23 11 31 12
## 100 11 8 7 18 19 9 8 10
## 101 22 13 14 30 47 20 45 15
## 102 22 12 13 28 36 17 46 11
## 103 27 13 20 31 48 19 44 11
## 104 19 10 13 28 36 16 29 10
## 105 24 11 16 32 42 17 42 11
## 106 30 14 16 27 29 20 41 15
## 107 30 14 14 31 45 18 49 13
## 108 25 12 15 29 37 14 46 14
## 109 19 11 8 32 48 18 43 15
## 110 18 15 15 27 48 13 45 15
## 111 23 11 17 29 35 18 36 11
## 112 20 9 14 25 21 15 21 9
## 113 30 11 17 25 26 17 39 13
## 114 13 7 13 29 32 15 23 7
## 115 23 11 10 28 15 10 34 11
## 116 14 9 9 21 11 13 20 13
## 117 13 8 7 21 14 3 17 10
## 118 9 4 8 18 19 20 18 12
## 119 25 9 7 26 16 10 23 12
## 120 11 10 9 21 18 10 19 10
## 121 35 10 17 23 44 18 46 13
## 122 5 5 7 17 16 12 19 12
## 123 16 11 10 29 35 17 40 14
## 124 10 5 5 19 15 13 14 13
## 125 14 6 6 11 12 6 8 9
## 126 23 14 12 25 18 14 30 12
## 127 23 15 9 28 15 14 24 12
## 128 14 9 14 13 13 7 17 9
## 129 10 11 9 22 17 9 23 8
## 130 28 8 13 29 13 12 29 12
## 131 27 11 16 31 31 17 38 13
## 132 17 6 6 16 13 6 17 10
## 133 4 5 4 13 13 6 14 9
## 134 9 7 7 15 13 12 20 12
## 135 14 7 6 32 36 13 32 13
## 136 24 10 16 25 15 12 26 11
## 137 17 8 8 28 22 17 38 14
## 138 25 11 14 29 26 17 38 16
## 139 15 10 14 11 13 7 16 9
## 140 10 6 10 15 14 9 14 8
## 141 37 13 13 28 46 12 42 13
## 142 17 12 16 29 25 17 32 13
## 143 17 9 14 23 26 16 34 10
## 144 14 12 16 27 42 18 37 11
## 145 16 7 11 28 15 15 18 7
## 146 22 11 14 30 25 17 39 13
## 147 11 10 11 32 43 14 44 15
## 148 16 3 6 27 27 18 43 15
## 149 20 11 14 22 14 9 21 9
## 150 16 10 14 26 17 6 31 13
## 151 22 12 15 28 15 15 30 11
## 152 15 5 6 16 16 12 14 10
## 153 15 9 12 18 15 16 22 11
## 154 15 8 12 23 23 15 40 13
## 155 25 9 10 17 7 3 13 6
## 156 28 14 17 27 14 15 40 12
## 157 25 12 8 26 24 13 35 11
## 158 17 5 9 24 17 10 19 10
## 159 27 9 15 31 16 16 22 12
## 160 23 8 11 31 37 17 42 14
## 161 11 7 6 12 8 14 22 10
## 162 18 8 11 29 32 12 28 10
## 163 23 10 11 39 22 16 40 14
## 164 21 9 12 25 22 14 31 10
## 165 9 9 5 22 28 9 30 9
## 166 9 6 11 24 20 14 27 9
## 167 8 7 7 18 6 4 0 1
## 168 8 6 9 13 14 11 11 9
## 169 9 10 11 13 15 3 8 3
## 170 5 7 5 13 11 8 19 10
## 171 16 10 13 27 20 14 29 15
## 172 9 7 6 21 16 11 20 9
## 173 19 11 13 28 29 20 25 16
## 174 14 4 8 16 22 11 21 9
## 175 7 6 9 22 13 4 18 11
## 176 24 12 8 26 20 15 24 11
## 177 14 3 13 11 12 8 27 11
## 178 9 4 7 20 16 7 17 10
## 179 17 8 10 18 19 12 13 12
## 180 13 7 8 19 16 9 16 7
## 181 19 8 9 21 11 8 16 7
## 182 17 8 12 27 16 12 27 11
## 183 22 11 17 25 19 14 26 11
## 184 1 4 4 24 11 10 13 11
## 185 25 13 14 24 15 11 25 8
## 186 27 8 11 24 14 15 21 7
## 187 21 12 16 31 16 15 25 11
## 188 8 7 6 14 13 11 11 8
## 189 4 7 6 17 13 10 12 9
## 190 28 12 11 30 24 18 26 14
## 191 9 5 11 26 13 11 20 10
## 192 18 9 13 28 25 15 15 9
## 193 33 14 11 26 25 16 42 14
## 194 44 14 17 32 43 16 44 11
## 195 33 14 8 29 44 9 44 15
## 196 24 11 16 21 13 9 31 10
## 197 13 9 10 30 15 6 21 10
## 198 2 4 0 13 0 0 0 0
## 199 13 10 9 18 18 11 13 11
## 200 10 5 9 17 10 8 14 5
## 201 18 9 11 28 15 9 19 12
## 202 32 10 20 30 33 17 38 12
## 203 19 8 7 22 19 11 39 11
## 204 14 11 13 29 15 13 22 14
## 205 23 8 15 28 41 16 35 16
## 206 15 4 11 24 30 13 42 17
## 207 15 3 14 29 24 18 36 13
## 208 19 5 13 27 45 16 38 17
## 209 21 9 11 23 17 10 16 15
## 210 23 9 4 13 14 13 35 15
## 211 17 13 6 22 15 11 23 13
## 212 11 7 9 22 14 13 23 10
## 213 20 10 15 27 19 8 29 23
## 214 23 11 16 27 17 13 27 13
## 215 16 12 8 20 16 13 23 10
## 216 24 12 16 31 32 12 17 9
## 217 12 9 14 24 18 11 13 8
## 218 14 11 11 27 40 18 35 16
## 219 10 6 9 31 23 15 18 10
## 220 29 11 12 25 23 13 40 12
## 221 10 10 12 25 23 16 26 13
## 222 27 10 11 31 46 19 29 16
## 223 9 8 8 24 11 9 11 8
## 224 23 14 13 30 20 17 38 13
## 225 26 11 10 30 44 12 40 13
## 226 8 10 5 18 19 10 14 6
## 227 14 10 9 28 13 12 18 10
## 228 24 12 12 22 15 12 26 11
## 229 4 9 4 15 13 10 10 8
## 230 16 13 15 28 16 14 36 14
## 231 36 9 10 27 49 13 47 9
## 232 17 10 11 29 13 12 23 12
## 233 52 15 23 31 54 19 54 15
## 234 20 8 11 28 34 17 33 11
## 235 36 13 13 30 44 19 43 15
## 236 12 10 10 30 33 12 45 12
## 237 15 8 15 25 26 15 20 12
## 238 11 8 9 22 19 10 10 9
## 239 33 14 16 29 35 18 50 13
## 240 27 10 12 25 32 17 47 11
## postclasf peabody agecat encour regular
## 1 23 62 1 1 0
## 2 22 8 1 1 1
## 3 19 32 1 0 1
## 4 15 27 0 0 0
## 5 21 71 1 0 1
## 6 24 32 1 0 1
## 7 15 28 0 0 1
## 8 23 38 0 1 1
## 9 24 49 1 1 1
## 10 24 32 1 1 1
## 11 17 43 1 0 1
## 12 19 58 1 0 1
## 13 13 39 0 0 0
## 14 14 43 1 1 1
## 15 17 56 1 1 1
## 16 21 37 0 1 1
## 17 18 43 1 1 1
## 18 9 29 0 1 1
## 19 19 45 0 1 1
## 20 13 51 1 0 1
## 21 24 55 1 1 1
## 22 19 49 0 1 1
## 23 14 31 0 1 1
## 24 15 40 0 1 1
## 25 10 48 0 1 1
## 26 18 35 0 1 1
## 27 14 62 1 0 1
## 28 15 42 0 1 1
## 29 21 58 1 0 1
## 30 12 29 0 1 1
## 31 10 49 0 1 1
## 32 14 30 0 1 1
## 33 21 62 1 1 1
## 34 19 58 0 1 1
## 35 22 55 0 1 1
## 36 10 33 1 1 1
## 37 19 55 1 0 1
## 38 6 27 0 0 0
## 39 12 62 0 1 1
## 40 11 58 0 1 1
## 41 19 34 0 1 1
## 42 20 32 0 1 1
## 43 11 32 0 0 1
## 44 7 28 0 0 0
## 45 10 29 0 0 1
## 46 19 35 0 0 1
## 47 23 67 1 0 1
## 48 16 29 0 1 1
## 49 18 35 1 1 1
## 50 14 67 0 0 1
## 51 10 39 1 0 0
## 52 23 90 0 0 1
## 53 6 46 1 0 0
## 54 11 39 0 0 1
## 55 15 34 0 0 1
## 56 16 38 1 0 0
## 57 17 34 0 1 1
## 58 20 37 1 0 0
## 59 12 33 0 0 1
## 60 11 36 1 0 1
## 61 22 49 1 0 1
## 62 17 53 0 0 0
## 63 22 65 1 0 1
## 64 17 55 1 0 1
## 65 23 85 1 0 1
## 66 17 43 1 1 0
## 67 23 65 0 1 1
## 68 22 75 0 1 1
## 69 18 85 1 0 1
## 70 20 40 1 0 1
## 71 22 58 0 0 1
## 72 14 42 0 0 1
## 73 17 69 1 1 1
## 74 19 58 1 1 1
## 75 17 37 0 1 1
## 76 20 62 0 1 1
## 77 23 99 1 1 1
## 78 23 75 0 1 1
## 79 22 82 1 1 1
## 80 16 47 1 0 1
## 81 24 62 1 0 1
## 82 23 67 0 1 1
## 83 21 40 1 1 1
## 84 17 41 0 1 1
## 85 15 56 1 1 1
## 86 23 73 1 1 1
## 87 21 85 1 0 1
## 88 19 59 1 0 1
## 89 21 58 1 0 1
## 90 23 92 1 0 1
## 91 17 69 0 1 1
## 92 15 56 0 1 1
## 93 22 78 1 1 1
## 94 16 58 0 1 1
## 95 24 78 1 1 1
## 96 22 67 1 1 1
## 97 18 69 0 1 1
## 98 16 53 0 0 1
## 99 17 55 0 0 1
## 100 13 53 0 0 0
## 101 24 67 1 1 1
## 102 20 62 0 1 1
## 103 24 59 0 1 1
## 104 15 46 0 1 1
## 105 20 58 0 1 1
## 106 21 92 1 1 1
## 107 23 48 1 1 1
## 108 18 65 1 1 1
## 109 19 67 0 1 1
## 110 18 59 0 1 1
## 111 19 39 1 1 1
## 112 16 47 0 1 1
## 113 19 51 0 1 1
## 114 16 43 0 1 1
## 115 7 65 1 0 0
## 116 13 39 1 1 1
## 117 7 33 0 0 0
## 118 20 34 1 1 1
## 119 12 35 1 1 0
## 120 9 32 0 0 1
## 121 19 44 1 0 1
## 122 15 31 0 0 1
## 123 19 44 1 0 1
## 124 17 27 0 0 0
## 125 5 29 0 1 0
## 126 16 47 0 1 1
## 127 9 35 1 1 1
## 128 7 32 0 0 0
## 129 13 36 0 0 1
## 130 15 38 1 1 1
## 131 22 42 1 1 1
## 132 9 27 0 1 1
## 133 11 60 0 1 1
## 134 11 28 0 1 0
## 135 12 33 1 1 1
## 136 10 55 1 0 1
## 137 20 29 0 1 1
## 138 22 46 1 1 1
## 139 13 33 1 1 1
## 140 10 32 1 1 1
## 141 15 47 1 1 1
## 142 19 90 1 1 1
## 143 20 61 1 1 1
## 144 15 36 1 0 1
## 145 15 35 1 1 1
## 146 19 48 1 1 1
## 147 21 35 0 1 1
## 148 20 35 0 1 1
## 149 7 35 1 1 1
## 150 9 35 1 1 1
## 151 17 45 1 1 1
## 152 14 33 0 0 0
## 153 16 42 1 1 1
## 154 18 32 1 1 1
## 155 5 40 1 1 0
## 156 21 42 1 1 1
## 157 17 46 0 1 1
## 158 15 39 1 1 1
## 159 18 69 1 1 1
## 160 18 36 0 1 1
## 161 16 35 0 1 0
## 162 14 34 1 1 1
## 163 17 32 0 1 1
## 164 18 38 1 1 1
## 165 10 32 1 1 1
## 166 9 34 1 1 1
## 167 4 35 1 1 0
## 168 16 34 1 1 1
## 169 5 28 0 1 1
## 170 8 29 0 0 0
## 171 16 37 1 1 1
## 172 9 32 1 1 1
## 173 19 35 1 0 1
## 174 9 35 0 1 1
## 175 9 32 0 1 1
## 176 13 47 0 1 1
## 177 10 35 0 1 1
## 178 5 35 0 0 0
## 179 17 30 0 1 1
## 180 11 35 1 0 0
## 181 11 39 1 0 0
## 182 16 39 0 0 0
## 183 15 36 1 0 0
## 184 13 27 0 0 0
## 185 14 45 0 0 0
## 186 13 28 0 0 0
## 187 18 40 0 1 1
## 188 10 47 1 1 0
## 189 8 36 1 1 1
## 190 16 39 1 1 1
## 191 15 39 1 1 1
## 192 12 43 0 1 1
## 193 11 69 1 0 0
## 194 13 69 1 0 0
## 195 10 38 1 0 0
## 196 16 39 1 0 0
## 197 9 30 0 0 0
## 198 0 34 0 0 0
## 199 8 36 1 0 0
## 200 10 48 0 0 0
## 201 9 49 1 0 0
## 202 20 49 1 1 1
## 203 21 37 0 1 1
## 204 16 45 0 1 0
## 205 22 46 1 1 1
## 206 20 32 1 1 1
## 207 23 30 0 1 0
## 208 22 35 1 1 1
## 209 9 36 0 1 0
## 210 13 45 0 0 1
## 211 9 59 1 0 0
## 212 13 42 0 0 1
## 213 11 41 1 0 0
## 214 10 39 0 0 1
## 215 12 94 1 0 1
## 216 10 55 1 1 1
## 217 10 28 0 1 1
## 218 21 32 1 1 1
## 219 13 28 0 1 1
## 220 16 59 1 0 0
## 221 12 27 0 1 1
## 222 20 61 1 1 1
## 223 7 35 0 1 1
## 224 21 58 1 1 1
## 225 21 59 1 1 1
## 226 8 34 1 1 0
## 227 11 41 1 1 0
## 228 19 44 1 0 0
## 229 11 41 0 0 0
## 230 16 59 0 0 0
## 231 17 53 1 0 0
## 232 8 31 0 1 1
## 233 23 78 1 1 1
## 234 18 43 0 1 1
## 235 23 90 1 1 1
## 236 20 49 0 1 1
## 237 11 41 0 1 1
## 238 7 30 0 1 1
## 239 23 69 1 1 1
## 240 19 65 0 1 1