Bibliometric Routine

Fábio Rocha Campos

14 de setembro de 2017

Objetivo

Estabelecer um script pronto para análise de bibliometria e cientometria para consultas realizadas no ISI - Web Of Knowledge http://www.webofknowledge.com/

Este script é baseado no pacote “Bibliometrix” http://www.bibliometrix.org/ para R. Na aba Documents é possível baixar um tutorial para preparar os dados para rodar no pacote.

Sendo assim, o script abaixo considera que o usuário já baixou a consulta em .txt ou .bib. A título de demonstração consultamos no ISI o termo “autonomous vehicles” e selecionamos apenas áreas que se refere aos “veículos autonômos” que estão sendo desenvolvidos para o ambiente urbano.

O documento consta apenas os resultados sendo que o script em formato .RMD ou .R pode ser obtido neste link: https://github.com/fabiorcampos/Bibliometric-Routines

Resumo

Main Information

 [1] "\n\nMain Information about data\n\n"                 
 [2] "Articles                              291 \n"        
 [3] "Sources (Journals, Books, etc.)       141 \n"        
 [4] "Keywords Plus (ID)                    474 \n"        
 [5] "Author's Keywords (DE)                365 \n"        
 [6] "Period                                1985 - 2015 \n"
 [7] "Average citations per article         11.73 \n\n"    
 [8] "Authors                               537 \n"        
 [9] "Author Appearances                    647 \n"        
[10] "Authors of single authored articles   105 \n"        
[11] "Authors of multi authored articles    432 \n\n"      
[12] "Articles per Author                   0.542 \n"      
[13] "Authors per Article                   1.85 \n"       
[14] "Co-Authors per Articles               2.22 \n"       
[15] "Collaboration Index                   2.94 \n"       
[16] "\n"                                                  

Annual Scientific Production

Most Productive Authors

Authors Articles Authors Articles Fractionalized
BORNMANN,L 8 BORNMANN,L 4.67
KOSTOFF,R 8 MARX,W 3.17
MARX,W 6 ATKINSON,R 3.00
GLANZEL,W 5 BROADUS,R 3.00
HUMENIK,J 5 CRONIN,B 3.00
ABRAMO,G 4 BORGMAN,C 2.50
D’ANGELO,CA 4 MCCAIN,K 2.50
ATKINSON,R 3 PERITZ,B 2.50
BARKER,K 3 KOSTOFF,R 2.10
BORGMAN,C 3 ADAMS,J 2.00

Top Manuscripts

Paper TC TCperYear
DAIM TU;RUEDA G;MARTIN H;GERDSRI P,(2006),TECHNOL. FORECAST. SOC. CHANG. 211 19.18
WHITE H;MCCAIN K,(1989),ANNU. REV. INFORM. SCI. TECHNOL. 196 7.00
BORGMAN C;FURNER J,(2002),ANNU. REV. INFORM. SCI. TECHNOL. 192 12.80
WEINGART P,(2005),SCIENTOMETRICS 151 12.58
NARIN F,(1994),SCIENTOMETRICS 141 6.13
CRONIN B,(2001),J. INF. SCI. 129 8.06
CHEN Y;YEH H;WU J;HASCHLER I;CHEN T;WETTER T,(2011),SCIENTOMETRICS 101 16.83
HOOD W;WILSON C,(2001),SCIENTOMETRICS 71 4.44
D’ANGELO CA;GIUFFRIDA C;ABRAMO G,(2011),J. AM. SOC. INF. SCI. TECHNOL. 64 10.67
NARIN F;OLIVASTRO D;STEVENS K,(1994),EVAL. REV. 62 2.70

Most Productive Countries

Total Citations per Country

Country Total Citations Average Article Citations
USA 1831 22.60
GERMANY 330 19.41
ITALY 163 32.60
AUSTRALIA 134 16.75
ENGLAND 121 4.65
CANADA 111 13.88
INDIA 85 8.50
SPAIN 85 9.44
IRAN 74 37.00
BELGIUM 70 10.00

Most Relevant Sources

Sources Articles
SCIENTOMETRICS 49
JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY 14
JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE 8
JOURNAL OF DOCUMENTATION 6
JOURNAL OF INFORMATION SCIENCE 6
JOURNAL OF INFORMETRICS 6
BRITISH JOURNAL OF ANAESTHESIA 5
LIBRI 5
SOCIAL WORK IN HEALTH CARE 5
TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE 5

Most Related Keywords

Author Keywords (DE) Articles Keywords-Plus (ID) Articles
BIBLIOMETRICS 63 SCIENCE 38
CITATION ANALYSIS 11 INDICATORS 24
SCIENTOMETRICS 7 IMPACT 23
IMPACT FACTOR 5 CITATION 20
INFORMATION RETRIEVAL 5 CITATION ANALYSIS 15
PEER REVIEW 5 JOURNALS 14
CITATION 4 H-INDEX 13
CITATIONS 4 PUBLICATION 12
H-INDEX 4 INFORMATION-SCIENCE 10
IMPACT FACTORS 4 IMPACT FACTORS 8

Authors’ Dominance ranking

The function dominance calculates the authors’ dominance ranking as proposed by Kumar & Kumar, 2008.

Dominance Factor Multi Authored First Authored Rank by Articles Rank by DF
KOSTOFF,R 1.0000000 8 8 2 1
HOLDEN,G 1.0000000 3 3 9 2
ABRAMO,G 0.7500000 4 3 5 3
GARG,K 0.6666667 3 2 8 4
MOPPETT,IK 0.6666667 3 2 10 5
BORNMANN,L 0.6250000 8 5 1 6
GLANZEL,W 0.6000000 5 3 4 7
BORGMAN,C 0.3333333 3 1 7 8
D’ANGELO,CA 0.2500000 4 1 6 9
MARX,W 0.1666667 6 1 3 10

Authors’ h-index

The h-index is an author-level metric that attempts to measure both the productivity and citation impact of the publications of a scientist or scholar.

authors=gsub(","," ",names(df$Authors)[1:10])

indices <- Hindex(database, authors, sep = ";",years=50)

knitr::kable(indices$H)
Author h_index g_index m_index TC NP
BORNMANN L 4 7 0.6666667 50 8
KOSTOFF R 8 8 0.4210526 276 8
MARX W 3 6 0.4285714 36 6
GLANZEL W 2 5 0.0833333 64 5
HUMENIK J 5 5 0.2777778 213 5
ABRAMO G 4 4 0.4444444 158 4
D’ANGELO CA 4 4 0.4444444 158 4
ATKINSON R 0 0 0.0000000 0 3
BARKER K 3 3 0.2307692 61 3
BORGMAN C 3 3 0.1034483 225 3

Lotka’s Law coefficient estimation

Lotka’s law describes the frequency of publication by authors in any given field as an inverse square law, where the number of authors publishing a certain number of articles is a fixed ratio to the number of authors publishing a single article.

L <- lotka(df)
# Author Productivity. Empirical Distribution
knitr::kable(L$AuthorProd)
N.Articles N.Authors Freq
1 467 0.8696462
2 49 0.0912477
3 14 0.0260708
4 2 0.0037244
5 2 0.0037244
6 1 0.0018622
8 2 0.0037244

Bibliometric network matrices

Bibliographic coupling

NetMatrix <- biblioNetwork(database, analysis = "coupling", network = "authors", sep = ";")

# calculate jaccard similarity coefficient
S <- normalizeSimilarity(NetMatrix, type="jaccard")

# plot authors' similarity (first 20 authors)
net=networkPlot(S, n = 10, Title = "Authors' Coupling", type = "fruchterman", size=FALSE,remove.multiple=TRUE)

Bibliographic co-citation