A1 <- matrix(c(1,2,3,4,-1,0,1,3,0,1,-2,1,5,4,-2,-3), nrow = 4, byrow = T)
A1
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] -1 0 1 3
## [3,] 0 1 -2 1
## [4,] 5 4 -2 -3
#After the row reduced echelon matrix
A<- matrix(c(1,2,3,4,0,2,4,7,0,0,-4,-5/2,0,0,0,9/8), nrow= 4, ncol=4, byrow= TRUE)
A
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4.000
## [2,] 0 2 4 7.000
## [3,] 0 0 -4 -2.500
## [4,] 0 0 0 1.125
Ans: From the above matrix, its known that its dimension is 4x4 square matrix and lineary independent, therefore it rank is 4
Ans:if m is greater than n, then the maximum rank of the matrix is n and if m is less than n, then the maximum rank of the matrix is m.
B <- matrix(c(1,2,1,3,6,3,2,4,2), nrow = 3, byrow = T)
B
## [,1] [,2] [,3]
## [1,] 1 2 1
## [2,] 3 6 3
## [3,] 2 4 2
dim(B)
## [1] 3 3
R1 <- B[1, ]
R2 <- B[2, ]
R3 <- B[3, ]
a <- R1-(1/3)%*%R2
b <- R3-(2/3)%*%R2
M <- matrix(c(a,b,R2), nrow = 3, byrow = T)
M
## [,1] [,2] [,3]
## [1,] 0 0 0
## [2,] 0 0 0
## [3,] 3 6 3
Answer: Since the rank is number of non zero row, rank is 1.
B <- matrix(c(1,2,3,0,4,5,0,0,6), nrow = 3, byrow = T)
B
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 0 4 5
## [3,] 0 0 6
\[ pB(\lambda) = det(B-(\lambda I3)) \] \[ = \begin{pmatrix} 1-\lambda & 2 & 3\\ 0 & 4-\lambda & 5\\ 0 & 0 & 6-\lambda \\ \end{pmatrix} \] \[ = (1-\lambda)[(4-\lambda)(6-\lambda)-(0)(5)] - 2[0] + 3[0] \] \[ = (1-\lambda)[(4-\lambda)(6-\lambda)] \]
\[ \lambda = 1, 4 and 6 \] \[ Substituting \lambda = 1, Eigen vectors are = \Bigg[\begin{pmatrix} &1\\ &0\\ &0\\ \end{pmatrix} \Bigg] \] \[ Substituting \lambda = 4, Eigen vectors are = \Bigg[\begin{pmatrix} &1.6\\ &2.5\\ &1\\ \end{pmatrix} \Bigg] \]
\[ Substituting \lambda = 6, Eigen vectors are = \Bigg[\begin{pmatrix} &0.6\\ &1\\ &0\\ \end{pmatrix} \Bigg] \]
eigen(B, only.values = FALSE, EISPACK = TRUE)
## $values
## [1] 6 4 1
##
## $vectors
## [,1] [,2] [,3]
## [1,] 0.5108407 0.5547002 1
## [2,] 0.7981886 0.8320503 0
## [3,] 0.3192754 0.0000000 0