# Must load dplyr
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readxl)
# Import .txt file from local computer
txtfile<-read.table("Practice 3.txt")

# Create tibble
txtfile<-tbl_df(txtfile)
txtfile
## # A tibble: 16 x 7
##         V1         V2               V3       V4     V5            V6
##     <fctr>     <fctr>           <fctr>   <fctr> <fctr>        <fctr>
##  1    Name Hours_Week Years_of_Service Pay_Rate    Age Height_Inches
##  2    John         40               20       12     23            64
##  3     Sam         38                2       13     45            65
##  4   Kelly         38                3       14     34            70
##  5     Liz         36                4       12     23            66
##  6   Karen         20                3       23     35            62
##  7    Tami         24                6       24     44            73
##  8     Jim         28                7       11     46            74
##  9    Dave         40                8       23     56            71
## 10   Bruce         32               12       45     62            72
## 11     Dan         28               14       26     28            60
## 12     Ray         28               13       28     13            61
## 13 Heather         24               10       12     22            66
## 14     Ron         12               16       13     68            67
## 15   Alice         10               27       14     69            64
## 16     Amy          8                1       15     70            70
## # ... with 1 more variables: V7 <fctr>
# Import .csv file from my computer
csvfile<-read.csv("Practice 3.csv")

# Create "tibble"
csvfile<-tbl_df(csvfile)
csvfile
## # A tibble: 15 x 7
##       Name Hours_Week Years_of_Service Pay_Rate   Age Height_Inches
##     <fctr>      <int>            <int>    <int> <int>         <int>
##  1    John         40               20       12    23            64
##  2     Sam         38                2       13    45            65
##  3   Kelly         38                3       14    34            70
##  4     Liz         36                4       12    23            66
##  5   Karen         20                3       23    35            62
##  6    Tami         24                6       24    44            73
##  7     Jim         28                7       11    46            74
##  8    Dave         40                8       23    56            71
##  9   Bruce         32               12       45    62            72
## 10     Dan         28               14       26    28            60
## 11     Ray         28               13       28    13            61
## 12 Heather         24               10       12    22            66
## 13     Ron         12               16       13    68            67
## 14   Alice         10               27       14    69            64
## 15     Amy          8                1       15    70            70
## # ... with 1 more variables: Weight_lbs. <int>
# Import excel file from my computer
excelfile<- read_excel("Practice 3.xlsx")

# Create "tibble"
excelfile<-tbl_df(excelfile)
excelfile
## # A tibble: 15 x 7
##       Name Hours_Week Years_of_Service Pay_Rate   Age Height_Inches
##      <chr>      <dbl>            <dbl>    <dbl> <dbl>         <dbl>
##  1    John         40               20       12    23            64
##  2     Sam         38                2       13    45            65
##  3   Kelly         38                3       14    34            70
##  4     Liz         36                4       12    23            66
##  5   Karen         20                3       23    35            62
##  6    Tami         24                6       24    44            73
##  7     Jim         28                7       11    46            74
##  8    Dave         40                8       23    56            71
##  9   Bruce         32               12       45    62            72
## 10     Dan         28               14       26    28            60
## 11     Ray         28               13       28    13            61
## 12 Heather         24               10       12    22            66
## 13     Ron         12               16       13    68            67
## 14   Alice         10               27       14    69            64
## 15     Amy          8                1       15    70            70
## # ... with 1 more variables: Weight_lbs. <dbl>
# Import .csv file from the web
csvwebfile<-read.csv("http://www.personal.psu.edu/dlp/alphaheight_weight_dataset.csv")

# Create a "tibble"
csvwebfile<-tbl_df(csvwebfile)
csvwebfile
## # A tibble: 200 x 4
##    Index Height Weight Gender
##    <int>  <dbl>  <dbl> <fctr>
##  1     1  65.78 112.99 female
##  2     2  71.52 136.49   male
##  3     3  69.40 153.03   male
##  4     4  68.22 142.34 female
##  5     5  67.79 144.30   male
##  6     6  68.70 123.30   male
##  7     7  69.80 141.49   male
##  8     8  70.01 136.46 female
##  9     9  67.90 112.37   male
## 10    10  66.78 120.67   male
## # ... with 190 more rows
# Import .csv from web
csvwebfile2<-read.csv("http://www.personal.psu.edu/dlp/w540/datasets/titanicsurvival.csv")

#Create "tibble"
csvwebfile2<- tbl_df(csvwebfile2)
csvwebfile2
## # A tibble: 2,201 x 4
##    Class   Age   Sex Survive
##    <int> <int> <int>   <int>
##  1     1     1     1       1
##  2     1     1     1       1
##  3     1     1     1       1
##  4     1     1     1       1
##  5     1     1     1       1
##  6     1     1     1       1
##  7     1     1     1       1
##  8     1     1     1       1
##  9     1     1     1       1
## 10     1     1     1       1
## # ... with 2,191 more rows
# Import SSPS.sav file from the web
library(haven)
spssfile<-read_sav("https://cehd.gmu.edu/assets/dimitrovbook/EXAMPLE_23_1.sav")
library(dplyr)
# Create a "tibble"
spssfile<-tbl_df(spssfile)
spssfile
## # A tibble: 1,028 x 12
##      Illness    Item_1    Item_2    Item_3 Item_4    Item_5    Item_6
##    <dbl+lbl> <dbl+lbl> <dbl+lbl> <dbl+lbl>  <dbl> <dbl+lbl> <dbl+lbl>
##  1         1         4         3         3      3         4         2
##  2         0         3         2         4      3         4         3
##  3         0         4         3         4      3         3         2
##  4         1         5         5         4      5         4         5
##  5         1         2         2         2      2         2         2
##  6         0         3         2         2      3         2         1
##  7         0         2         1         1      2         1         2
##  8         0         3         2         4      4         2         2
##  9         0         2         4         3      3         3         3
## 10         1         1         1         1      1         1         1
## # ... with 1,018 more rows, and 5 more variables: Item_7 <dbl>,
## #   Item_8 <dbl+lbl>, Item_9 <dbl+lbl>, Item_10 <dbl+lbl>, Item_11 <dbl>