Auto %>% select(mpg : origin) %>%
ggpairs()
Auto %>% select(mpg : origin) %>%
ggcorr(., palette = "RdBu", label = TRUE)
Auto %>% select(mpg : origin) -> dt
fit <- lm(mpg ~ ., data = dt)
summary(fit)
##
## Call:
## lm(formula = mpg ~ ., data = dt)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.5903 -2.1565 -0.1169 1.8690 13.0604
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17.218435 4.644294 -3.707 0.00024 ***
## cylinders -0.493376 0.323282 -1.526 0.12780
## displacement 0.019896 0.007515 2.647 0.00844 **
## horsepower -0.016951 0.013787 -1.230 0.21963
## weight -0.006474 0.000652 -9.929 < 2e-16 ***
## acceleration 0.080576 0.098845 0.815 0.41548
## year 0.750773 0.050973 14.729 < 2e-16 ***
## origin 1.426141 0.278136 5.127 4.67e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.328 on 384 degrees of freedom
## Multiple R-squared: 0.8215, Adjusted R-squared: 0.8182
## F-statistic: 252.4 on 7 and 384 DF, p-value: < 2.2e-16
Comment on the output. For instance:
i. Is there a relationship between the predictors and the response?
Only between some the predictors depending on the observations we have.
ii. Which predictors appear to have a statistically significant relationship to the response?
Displacement, weight, year and origin are significant, thus we can claim that there is a significant relationship.
iii. What does the coefficient for the year variable suggest? That the newer the car, the higher the mpg.
(d) Use the plot() function to produce diagnostic plots of the linear regression fit. Comment on any problems you see with the fit. Do the residual plots suggest any unusually large outliers? Does the leverage plot identify any observations with unusually high leverage?
library(broom)
model <- broom::augment(fit)
residual <- function(model) {ggplot(model, aes(.fitted, .resid)) +
geom_point() +
geom_hline(yintercept = 0) +
geom_smooth(se = FALSE)}
stdResidual <- function(model) {ggplot(model, aes(.fitted, .std.resid)) +
geom_point() +
geom_hline(yintercept = 0) +
geom_smooth(se = FALSE)}
ggqqplot <- function(model) {ggplot(model) +
stat_qq(aes(sample = .std.resid)) +
geom_abline()}
sqrtResidual <- function(model) {ggplot(model, aes(.fitted, sqrt(abs(.std.resid)))) +
geom_point() +
geom_smooth(se = FALSE)}
cooksD <- function(model) { ggplot(model, aes(seq_along(.cooksd), .cooksd)) +
geom_col() }
hatPlot <- function(model) { ggplot(model, aes(.hat, .std.resid)) +
geom_vline(size = 2, colour = "white", xintercept = 0) +
geom_hline(size = 2, colour = "white", yintercept = 0) +
geom_point() + geom_smooth(se = FALSE) }
hatCooksD <- function(model) { ggplot(model, aes(.hat, .std.resid)) +
geom_point(aes(size = .cooksd)) +
geom_smooth(se = FALSE, size = 0.5) }
hatCooksD2 <- function(model) { ggplot(model, aes(.hat, .cooksd)) +
geom_vline(xintercept = 0, colour = NA) +
geom_abline(slope = seq(0, 3, by = 0.5), colour = "white") +
geom_smooth(se = FALSE) +
geom_point() }
purrr::invoke_map(.f = list(residual, stdResidual, ggqqplot, sqrtResidual, cooksD, hatPlot, hatCooksD, hatCooksD2), .x = list(list(model))) %>%
gridExtra::grid.arrange(grobs = ., ncol = 2,
top = paste("Diagnostic plots for", as.expression(fit$call)))
There is a trend in the variance of the residuals. In fact the model fits more worse on higher values of the predicted variable. That’s probably due to the effect of an influencial too as we can see from hat and Cook’s D value.
summary(lm(mpg ~ .*., dt))
##
## Call:
## lm(formula = mpg ~ . * ., data = dt)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.6303 -1.4481 0.0596 1.2739 11.1386
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.548e+01 5.314e+01 0.668 0.50475
## cylinders 6.989e+00 8.248e+00 0.847 0.39738
## displacement -4.785e-01 1.894e-01 -2.527 0.01192 *
## horsepower 5.034e-01 3.470e-01 1.451 0.14769
## weight 4.133e-03 1.759e-02 0.235 0.81442
## acceleration -5.859e+00 2.174e+00 -2.696 0.00735 **
## year 6.974e-01 6.097e-01 1.144 0.25340
## origin -2.090e+01 7.097e+00 -2.944 0.00345 **
## cylinders:displacement -3.383e-03 6.455e-03 -0.524 0.60051
## cylinders:horsepower 1.161e-02 2.420e-02 0.480 0.63157
## cylinders:weight 3.575e-04 8.955e-04 0.399 0.69000
## cylinders:acceleration 2.779e-01 1.664e-01 1.670 0.09584 .
## cylinders:year -1.741e-01 9.714e-02 -1.793 0.07389 .
## cylinders:origin 4.022e-01 4.926e-01 0.816 0.41482
## displacement:horsepower -8.491e-05 2.885e-04 -0.294 0.76867
## displacement:weight 2.472e-05 1.470e-05 1.682 0.09342 .
## displacement:acceleration -3.479e-03 3.342e-03 -1.041 0.29853
## displacement:year 5.934e-03 2.391e-03 2.482 0.01352 *
## displacement:origin 2.398e-02 1.947e-02 1.232 0.21875
## horsepower:weight -1.968e-05 2.924e-05 -0.673 0.50124
## horsepower:acceleration -7.213e-03 3.719e-03 -1.939 0.05325 .
## horsepower:year -5.838e-03 3.938e-03 -1.482 0.13916
## horsepower:origin 2.233e-03 2.930e-02 0.076 0.93931
## weight:acceleration 2.346e-04 2.289e-04 1.025 0.30596
## weight:year -2.245e-04 2.127e-04 -1.056 0.29182
## weight:origin -5.789e-04 1.591e-03 -0.364 0.71623
## acceleration:year 5.562e-02 2.558e-02 2.174 0.03033 *
## acceleration:origin 4.583e-01 1.567e-01 2.926 0.00365 **
## year:origin 1.393e-01 7.399e-02 1.882 0.06062 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.695 on 363 degrees of freedom
## Multiple R-squared: 0.8893, Adjusted R-squared: 0.8808
## F-statistic: 104.2 on 28 and 363 DF, p-value: < 2.2e-16
All the interactions (:) marked with at least * are significant
fit2 <- lm(mpg ~ cylinders + log(displacement) + log(horsepower) + log(weight) + acceleration + year + origin, dt)
map(list(fit, fit2), summary) %>%
map('adj.r.squared')
## [[1]]
## [1] 0.8182238
##
## [[2]]
## [1] 0.8450547
If I look at the partial residual plots, it seems like the correlation between variables such as displacement, horsepower and weight is not actually linear. Thus we can consider a log transformation given the pattern of the residuals.
summary(Weeklyd)
## Year Lag1 Lag2 Lag3
## Min. :1990 Min. :-18.1950 Min. :-18.1950 Min. :-18.1950
## 1st Qu.:1995 1st Qu.: -1.1540 1st Qu.: -1.1540 1st Qu.: -1.1580
## Median :2000 Median : 0.2410 Median : 0.2410 Median : 0.2410
## Mean :2000 Mean : 0.1506 Mean : 0.1511 Mean : 0.1472
## 3rd Qu.:2005 3rd Qu.: 1.4050 3rd Qu.: 1.4090 3rd Qu.: 1.4090
## Max. :2010 Max. : 12.0260 Max. : 12.0260 Max. : 12.0260
## Lag4 Lag5 Volume
## Min. :-18.1950 Min. :-18.1950 Min. :0.08747
## 1st Qu.: -1.1580 1st Qu.: -1.1660 1st Qu.:0.33202
## Median : 0.2380 Median : 0.2340 Median :1.00268
## Mean : 0.1458 Mean : 0.1399 Mean :1.57462
## 3rd Qu.: 1.4090 3rd Qu.: 1.4050 3rd Qu.:2.05373
## Max. : 12.0260 Max. : 12.0260 Max. :9.32821
## Today Direction
## Min. :-18.1950 Down:484
## 1st Qu.: -1.1540 Up :605
## Median : 0.2410
## Mean : 0.1499
## 3rd Qu.: 1.4050
## Max. : 12.0260
ggpairs(Weeklyd)
ggcorr(Weeklyd, palette = "RdBu", label = TRUE)
It seems like there is a very high correlation between year and volume.
(b) Use the full data set to perform a logistic regression with. Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?
fit <- glm(Direction ~ . - Today - Year, family = binomial, data = Weeklyd)
summary(fit)
##
## Call:
## glm(formula = Direction ~ . - Today - Year, family = binomial,
## data = Weeklyd)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.6949 -1.2565 0.9913 1.0849 1.4579
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.26686 0.08593 3.106 0.0019 **
## Lag1 -0.04127 0.02641 -1.563 0.1181
## Lag2 0.05844 0.02686 2.175 0.0296 *
## Lag3 -0.01606 0.02666 -0.602 0.5469
## Lag4 -0.02779 0.02646 -1.050 0.2937
## Lag5 -0.01447 0.02638 -0.549 0.5833
## Volume -0.02274 0.03690 -0.616 0.5377
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1496.2 on 1088 degrees of freedom
## Residual deviance: 1486.4 on 1082 degrees of freedom
## AIC: 1500.4
##
## Number of Fisher Scoring iterations: 4
Only lag2 appears significant.
#1 are Up
augment(fit) %>% mutate(observed = as.numeric(Direction)-1) %>%
select(observed, .fitted) %>% mutate(fitted = ifelse(.fitted > .5, '1', '0')) %>%
select(-.fitted) %>%
count(observed, fitted) %>%
spread(fitted, n)
## # A tibble: 2 x 3
## observed `0` `1`
## * <dbl> <int> <int>
## 1 0 465 19
## 2 1 563 42
The model does well in predicting true negative but performs poorly on the rest.
fit2 <- glm(Direction ~ Lag2, family = binomial, data = filter(Weeklyd, Year <= 2008) )
augment(fit2) %>% mutate(observed = as.numeric(Direction)-1) %>%
select(observed, .fitted) %>% mutate(fitted = ifelse(.fitted > .5, '1', '0')) %>%
select(-.fitted) %>%
count(observed, fitted) %>%
spread(fitted, n)
## # A tibble: 2 x 3
## observed `0` `1`
## * <dbl> <int> <int>
## 1 0 439 2
## 2 1 533 11
select(filter(Weeklyd, Year > 2008), Direction) %>%
mutate(fitted = ifelse(predict.glm(fit2, filter(Weeklyd, Year > 2008), type = 'response') > .5, 1, 0), observed = as.numeric(Direction)-1) %>%
count(observed, fitted) %>%
mutate(prop = n/sum(n)) %>%
select(-n) %>%
spread(fitted, prop)
## # A tibble: 2 x 3
## observed `0` `1`
## * <dbl> <dbl> <dbl>
## 1 0 0.08653846 0.3269231
## 2 1 0.04807692 0.5384615
The confusions matrix says that we are underperforming a random guess.
library(MASS)
fitLDA <- lda(formula(fit2), data = filter(Weeklyd, Year <= 2008))
predict(fitLDA, filter(Weeklyd, Year > 2008))$class
## [1] Up Up Down Down Up Up Up Down Down Down Down Up Up Up
## [15] Up Up Up Up Up Up Down Up Up Up Up Up Up Up
## [29] Up Up Up Up Up Up Up Up Up Up Up Up Up Up
## [43] Up Up Down Up Up Up Up Up Up Up Up Up Up Up
## [57] Down Up Up Up Up Up Up Up Up Up Up Up Up Up
## [71] Up Down Up Down Up Up Up Up Down Down Up Up Up Up
## [85] Up Down Up Up Up Up Up Up Up Up Up Up Up Up
## [99] Up Up Up Up Up Up
## Levels: Down Up
fitQDA <- lda(formula(fit2), data = filter(Weeklyd, Year <= 2008))
predict(fitQDA, filter(Weeklyd, Year > 2008))$class
## [1] Up Up Down Down Up Up Up Down Down Down Down Up Up Up
## [15] Up Up Up Up Up Up Down Up Up Up Up Up Up Up
## [29] Up Up Up Up Up Up Up Up Up Up Up Up Up Up
## [43] Up Up Down Up Up Up Up Up Up Up Up Up Up Up
## [57] Down Up Up Up Up Up Up Up Up Up Up Up Up Up
## [71] Up Down Up Down Up Up Up Up Down Down Up Up Up Up
## [85] Up Down Up Up Up Up Up Up Up Up Up Up Up Up
## [99] Up Up Up Up Up Up
## Levels: Down Up
detach("package:MASS", unload=TRUE)
library(class)
train <- sample(1:nrow(Weekly), 900)
train.X <- cbind(Weekly$Lag1 ,Weekly$Lag2)[train ,]
test.X <- cbind(Weekly$Lag1 ,Weekly$Lag2)[-train,]
train.Direction <- Weekly$Direction[train]
test.Direction <- Weekly$Direction[-train]
set.seed(1)
knn.pred <- knn(train.X, test.X, train.Direction, k=1)
table(knn.pred , test.Direction)
## test.Direction
## knn.pred Down Up
## Down 44 37
## Up 37 71
knn.pred <- knn(train.X, test.X, train.Direction, k=3)
table(knn.pred , test.Direction)
## test.Direction
## knn.pred Down Up
## Down 34 39
## Up 47 69