Dilip Ganesan
# Loading Wholesale Prices for Oats, Peas, Beans and Barley
whole_oats = 1.05
whole_peas = 3.17
whole_beans = 1.99
whole_barle = 0.95
# Loading Retail Prices for Oats, Peas, Beans and Barley
retail_oats = 1.29
retail_peas = 3.76
retail_beans = 2.23
retail_barley = 1.65
# Demand Range.
demand_oats = seq(0,10)
demand_peas = seq(0,8)
demand_beans = seq(0,14)
demand_barley = seq(0,11)
# Sample of each demand for 90 days
oats_90_sam = sample(demand_oats,90,replace=TRUE)
peas_90_sam = sample(demand_peas, 90, replace = TRUE)
beans_90_sam = sample(demand_beans, 90, replace=TRUE)
bar_90_sam = sample(demand_barley,90,replace = TRUE)
# Calculation of Cost Price, Selling Price and Profit
cost_price_day = oats_90_sam * whole_oats +
peas_90_sam * whole_peas +
beans_90_sam * whole_beans +
bar_90_sam * whole_barle
selling_price_day = oats_90_sam * retail_oats +
peas_90_sam * retail_peas +
beans_90_sam * retail_beans +
bar_90_sam * retail_barley
profit_per_day = selling_price_day - cost_price_day
# Final Result in Data Frame.
finaldf = data.frame("Oats" = oats_90_sam,"Peas" = peas_90_sam,
"Beans"= beans_90_sam, "Barley"=bar_90_sam,
"Cost Price" = cost_price_day, "Selling Price"
= selling_price_day, "Profit" = profit_per_day)
knitr::kable(finaldf)
Oats | Peas | Beans | Barley | Cost.Price | Selling.Price | Profit |
---|---|---|---|---|---|---|
0 | 1 | 13 | 9 | 37.59 | 47.60 | 10.01 |
8 | 2 | 10 | 2 | 36.54 | 43.44 | 6.90 |
9 | 4 | 7 | 1 | 37.01 | 43.91 | 6.90 |
6 | 1 | 3 | 0 | 15.44 | 18.19 | 2.75 |
10 | 2 | 13 | 7 | 49.36 | 60.96 | 11.60 |
9 | 7 | 13 | 2 | 59.41 | 70.22 | 10.81 |
7 | 2 | 11 | 5 | 40.33 | 49.33 | 9.00 |
2 | 8 | 11 | 8 | 56.95 | 70.39 | 13.44 |
10 | 5 | 13 | 6 | 57.92 | 70.59 | 12.67 |
1 | 8 | 14 | 1 | 55.22 | 64.24 | 9.02 |
6 | 3 | 0 | 7 | 22.46 | 30.57 | 8.11 |
5 | 7 | 4 | 5 | 40.15 | 49.94 | 9.79 |
2 | 0 | 1 | 7 | 10.74 | 16.36 | 5.62 |
5 | 4 | 5 | 3 | 30.73 | 37.59 | 6.86 |
3 | 7 | 3 | 0 | 31.31 | 36.88 | 5.57 |
3 | 3 | 6 | 8 | 32.20 | 41.73 | 9.53 |
10 | 1 | 11 | 11 | 46.01 | 59.34 | 13.33 |
3 | 3 | 4 | 6 | 26.32 | 33.97 | 7.65 |
10 | 6 | 3 | 10 | 44.99 | 58.65 | 13.66 |
4 | 7 | 3 | 1 | 33.31 | 39.82 | 6.51 |
1 | 4 | 13 | 3 | 42.45 | 50.27 | 7.82 |
8 | 1 | 14 | 10 | 48.93 | 61.80 | 12.87 |
8 | 4 | 10 | 5 | 45.73 | 55.91 | 10.18 |
9 | 8 | 4 | 1 | 43.72 | 52.26 | 8.54 |
1 | 2 | 9 | 1 | 26.25 | 30.53 | 4.28 |
7 | 3 | 0 | 10 | 26.36 | 36.81 | 10.45 |
1 | 5 | 4 | 1 | 25.81 | 30.66 | 4.85 |
3 | 2 | 2 | 6 | 19.17 | 25.75 | 6.58 |
9 | 0 | 9 | 11 | 37.81 | 49.83 | 12.02 |
7 | 8 | 9 | 5 | 55.37 | 67.43 | 12.06 |
10 | 3 | 2 | 2 | 25.89 | 31.94 | 6.05 |
1 | 3 | 5 | 2 | 22.41 | 27.02 | 4.61 |
6 | 7 | 11 | 0 | 50.38 | 58.59 | 8.21 |
6 | 1 | 13 | 11 | 45.79 | 58.64 | 12.85 |
4 | 7 | 13 | 9 | 60.81 | 75.32 | 14.51 |
10 | 4 | 12 | 10 | 56.56 | 71.20 | 14.64 |
5 | 5 | 14 | 3 | 51.81 | 61.42 | 9.61 |
1 | 5 | 13 | 0 | 42.77 | 49.08 | 6.31 |
4 | 1 | 3 | 9 | 21.89 | 30.46 | 8.57 |
1 | 6 | 13 | 0 | 45.94 | 52.84 | 6.90 |
8 | 2 | 2 | 7 | 25.37 | 33.85 | 8.48 |
0 | 4 | 14 | 0 | 40.54 | 46.26 | 5.72 |
2 | 0 | 13 | 10 | 37.47 | 48.07 | 10.60 |
8 | 0 | 13 | 7 | 40.92 | 50.86 | 9.94 |
3 | 3 | 10 | 3 | 35.41 | 42.40 | 6.99 |
3 | 6 | 5 | 8 | 39.72 | 50.78 | 11.06 |
1 | 6 | 14 | 10 | 57.43 | 71.57 | 14.14 |
0 | 0 | 0 | 1 | 0.95 | 1.65 | 0.70 |
5 | 1 | 3 | 4 | 18.19 | 23.50 | 5.31 |
3 | 1 | 9 | 11 | 34.68 | 45.85 | 11.17 |
0 | 8 | 1 | 6 | 33.05 | 42.21 | 9.16 |
0 | 0 | 0 | 8 | 7.60 | 13.20 | 5.60 |
10 | 6 | 4 | 6 | 43.18 | 54.28 | 11.10 |
8 | 2 | 10 | 8 | 42.24 | 53.34 | 11.10 |
8 | 6 | 8 | 0 | 43.34 | 50.72 | 7.38 |
4 | 8 | 10 | 9 | 58.01 | 72.39 | 14.38 |
5 | 6 | 0 | 8 | 31.87 | 42.21 | 10.34 |
0 | 7 | 12 | 7 | 52.72 | 64.63 | 11.91 |
4 | 5 | 6 | 10 | 41.49 | 53.84 | 12.35 |
10 | 4 | 0 | 2 | 25.08 | 31.24 | 6.16 |
4 | 0 | 11 | 2 | 27.99 | 32.99 | 5.00 |
9 | 6 | 5 | 1 | 39.37 | 46.97 | 7.60 |
8 | 2 | 2 | 0 | 18.72 | 22.30 | 3.58 |
1 | 1 | 2 | 8 | 15.80 | 22.71 | 6.91 |
1 | 6 | 6 | 3 | 34.86 | 42.18 | 7.32 |
4 | 8 | 0 | 10 | 39.06 | 51.74 | 12.68 |
9 | 7 | 1 | 11 | 44.08 | 58.31 | 14.23 |
5 | 3 | 14 | 0 | 42.62 | 48.95 | 6.33 |
0 | 7 | 8 | 3 | 40.96 | 49.11 | 8.15 |
3 | 0 | 6 | 3 | 17.94 | 22.20 | 4.26 |
0 | 8 | 8 | 11 | 51.73 | 66.07 | 14.34 |
9 | 5 | 2 | 11 | 39.73 | 53.02 | 13.29 |
2 | 0 | 2 | 4 | 9.88 | 13.64 | 3.76 |
8 | 6 | 12 | 3 | 54.15 | 64.59 | 10.44 |
10 | 7 | 7 | 2 | 48.52 | 58.13 | 9.61 |
10 | 2 | 11 | 9 | 47.28 | 59.80 | 12.52 |
9 | 6 | 10 | 1 | 49.32 | 58.12 | 8.80 |
1 | 7 | 14 | 6 | 56.80 | 68.73 | 11.93 |
9 | 3 | 0 | 3 | 21.81 | 27.84 | 6.03 |
4 | 2 | 8 | 6 | 32.16 | 40.42 | 8.26 |
5 | 7 | 11 | 4 | 53.13 | 63.90 | 10.77 |
0 | 5 | 9 | 2 | 35.66 | 42.17 | 6.51 |
7 | 4 | 3 | 1 | 26.95 | 32.41 | 5.46 |
1 | 8 | 12 | 0 | 50.29 | 58.13 | 7.84 |
9 | 6 | 8 | 11 | 54.84 | 70.16 | 15.32 |
5 | 2 | 0 | 9 | 20.14 | 28.82 | 8.68 |
7 | 5 | 14 | 8 | 58.66 | 72.25 | 13.59 |
4 | 6 | 14 | 3 | 53.93 | 63.89 | 9.96 |
2 | 0 | 9 | 7 | 26.66 | 34.20 | 7.54 |
7 | 6 | 12 | 2 | 52.15 | 61.65 | 9.50 |
# Summation Data Frame
summationdf = data.frame("Total Cost Price" = sum(finaldf$Cost.Price),
"Total Selling Price" = sum(finaldf$Selling.Price),
"Total Profit" = sum(finaldf$Profit))
knitr::kable(summationdf)
Total.Cost.Price | Total.Selling.Price | Total.Profit |
---|---|---|
3434.29 | 4249.73 | 815.44 |