\[ B= \begin{pmatrix} -12 & 30 \\ -5 & 13\\ \end{pmatrix} \] \[ pB(\lambda) = det(B-(\lambda I2)) \] \[ = \begin{pmatrix} -12-\lambda & 30 \\ -5 & 13-\lambda \\ \end{pmatrix} \] \[ = (-12-\lambda)(13-\lambda)-(30)(-5) \] \[ = -156+12\lambda-13\lambda+\lambda ^2 \ +150 \]
\[ = \lambda ^2-\lambda-6 \]
\[ =(\lambda-3)(\lambda+2) \]
\[\lambda = 3 and \lambda = -2 \]
\[ \alpha _B(3) = 1 \]
\[ \alpha _B(-2) = 1 \]
if \[\lambda=3\] then B-3I2 =
\[ = \begin{pmatrix} -15 & 30\\ -5 & 10 \end{pmatrix} \]
\[ RREF = \begin{pmatrix} 1 & -2\\ 0 & 0 \end{pmatrix} \] \[ = \Bigg\langle \Bigg\{ \Bigg[ \begin{pmatrix} &2\\ &-1\\ \end{pmatrix} \Bigg] \Bigg\} \Bigg\rangle \]
if
\[\lambda=-2\] then B+2I2 =
\[ = \begin{pmatrix} -10 & 30\\ -5 & 15 \end{pmatrix} \] \[ RREF = \begin{pmatrix} 1 & -3\\ 0 & 0 \end{pmatrix} \]
\[ = \Bigg\langle \Bigg\{ \Bigg[ \begin{pmatrix} &3\\ &1\\ \end{pmatrix} \Bigg] \Bigg\} \Bigg\rangle \]
Geometric multiplicities \[\gamma_B(3)=1\] and \[\gamma_B(-2)=1\]