library(ggplot2)
ggplot(mpg,aes(x = factor(mpg$class),fill=factor(mpg$trans))) +
scale_fill_discrete("Transmission") +
xlab("Class") +
ylab("Count") +
geom_bar()
ggplot(mpg, aes(y=mpg$hwy, x=mpg$manufacturer)) +
geom_boxplot() +
coord_flip() +
ylab("Highway Fule Efficiency(miles/gallon)") +
xlab("Vehicle manufacturer")
gear
type and how they are further divded out by cyl
.library(ggthemes)
ggplot(diamonds) +
geom_density(aes(diamonds$price, fill= cut, color= cut), alpha=0.4)+
theme_economist()+
labs(x = "Diamond Price (USD)",
y = "Density",
title = "Diamond Price Density")
4. Draw a scatter plot showing the relationship between
wt
and mpg
.
p <-ggplot(iris, aes(x = Petal.Width, y = Sepal.Length)) +
geom_point() +
stat_smooth(method = "lm", col = "blue")+
ylab("Iris Petal Length") +
xlab("Iris Sepal Length")
p + labs(title = "Relationship between Petal and Sepal Length")
iris_graph <- ggplot(iris, aes(x=Sepal.Length, y=Petal.Length, colour = factor(Species))) +
geom_point() +
ggtitle("Relationship between Petal and Sepal Length")
iris_graph + geom_smooth(method = "lm", se = FALSE) +
scale_color_fivethirtyeight("Species") +
theme_fivethirtyeight()