store.df <- read.csv(paste("StoreData.csv", sep=""))
summary(store.df\(p1sales) #Summary of p2 sales summary(store.df\)p2sales) #Weekly price of product 1 table(store.df\(p1price) # Weekly pricce of product 2 table(store.df\)p2price)
aggregate(store.df$p2sales, by=list(country=store.df$country), sum)
## country x
## 1 AU 9934
## 2 BR 21362
## 3 CN 20911
## 4 DE 52263
## 5 GB 31264
## 6 JP 41344
## 7 US 31248
aggregate(store.df$p1sales, by=list(StoreID = store.df$storeNum), mean)
## StoreID x
## 1 101 130.5385
## 2 102 134.7404
## 3 103 136.0385
## 4 104 131.4423
## 5 105 129.5288
## 6 106 133.7981
## 7 107 133.8077
## 8 108 133.6923
## 9 109 131.5481
## 10 110 132.0962
## 11 111 130.4519
## 12 112 129.8846
## 13 113 137.7692
## 14 114 132.1923
## 15 115 129.5288
## 16 116 135.7500
## 17 117 135.0385
## 18 118 139.8462
## 19 119 133.7308
## 20 120 129.5481
by(store.df$p1sales, store.df$storeNum, mean)
## store.df$storeNum: 101
## [1] 130.5385
## --------------------------------------------------------
## store.df$storeNum: 102
## [1] 134.7404
## --------------------------------------------------------
## store.df$storeNum: 103
## [1] 136.0385
## --------------------------------------------------------
## store.df$storeNum: 104
## [1] 131.4423
## --------------------------------------------------------
## store.df$storeNum: 105
## [1] 129.5288
## --------------------------------------------------------
## store.df$storeNum: 106
## [1] 133.7981
## --------------------------------------------------------
## store.df$storeNum: 107
## [1] 133.8077
## --------------------------------------------------------
## store.df$storeNum: 108
## [1] 133.6923
## --------------------------------------------------------
## store.df$storeNum: 109
## [1] 131.5481
## --------------------------------------------------------
## store.df$storeNum: 110
## [1] 132.0962
## --------------------------------------------------------
## store.df$storeNum: 111
## [1] 130.4519
## --------------------------------------------------------
## store.df$storeNum: 112
## [1] 129.8846
## --------------------------------------------------------
## store.df$storeNum: 113
## [1] 137.7692
## --------------------------------------------------------
## store.df$storeNum: 114
## [1] 132.1923
## --------------------------------------------------------
## store.df$storeNum: 115
## [1] 129.5288
## --------------------------------------------------------
## store.df$storeNum: 116
## [1] 135.75
## --------------------------------------------------------
## store.df$storeNum: 117
## [1] 135.0385
## --------------------------------------------------------
## store.df$storeNum: 118
## [1] 139.8462
## --------------------------------------------------------
## store.df$storeNum: 119
## [1] 133.7308
## --------------------------------------------------------
## store.df$storeNum: 120
## [1] 129.5481
by(store.df$p1sales, list(store.df$storeNum, store.df$Year), mean)
## : 101
## : 1
## [1] 127.7885
## --------------------------------------------------------
## : 102
## : 1
## [1] 129.7115
## --------------------------------------------------------
## : 103
## : 1
## [1] 133.2308
## --------------------------------------------------------
## : 104
## : 1
## [1] 128.0769
## --------------------------------------------------------
## : 105
## : 1
## [1] 129.7692
## --------------------------------------------------------
## : 106
## : 1
## [1] 131.5
## --------------------------------------------------------
## : 107
## : 1
## [1] 131.1154
## --------------------------------------------------------
## : 108
## : 1
## [1] 134.8077
## --------------------------------------------------------
## : 109
## : 1
## [1] 129.8269
## --------------------------------------------------------
## : 110
## : 1
## [1] 132.6923
## --------------------------------------------------------
## : 111
## : 1
## [1] 130.8654
## --------------------------------------------------------
## : 112
## : 1
## [1] 134.5
## --------------------------------------------------------
## : 113
## : 1
## [1] 143.4808
## --------------------------------------------------------
## : 114
## : 1
## [1] 129.7115
## --------------------------------------------------------
## : 115
## : 1
## [1] 131.1731
## --------------------------------------------------------
## : 116
## : 1
## [1] 136.3654
## --------------------------------------------------------
## : 117
## : 1
## [1] 135.6154
## --------------------------------------------------------
## : 118
## : 1
## [1] 137.1923
## --------------------------------------------------------
## : 119
## : 1
## [1] 132.6731
## --------------------------------------------------------
## : 120
## : 1
## [1] 130.7308
## --------------------------------------------------------
## : 101
## : 2
## [1] 133.2885
## --------------------------------------------------------
## : 102
## : 2
## [1] 139.7692
## --------------------------------------------------------
## : 103
## : 2
## [1] 138.8462
## --------------------------------------------------------
## : 104
## : 2
## [1] 134.8077
## --------------------------------------------------------
## : 105
## : 2
## [1] 129.2885
## --------------------------------------------------------
## : 106
## : 2
## [1] 136.0962
## --------------------------------------------------------
## : 107
## : 2
## [1] 136.5
## --------------------------------------------------------
## : 108
## : 2
## [1] 132.5769
## --------------------------------------------------------
## : 109
## : 2
## [1] 133.2692
## --------------------------------------------------------
## : 110
## : 2
## [1] 131.5
## --------------------------------------------------------
## : 111
## : 2
## [1] 130.0385
## --------------------------------------------------------
## : 112
## : 2
## [1] 125.2692
## --------------------------------------------------------
## : 113
## : 2
## [1] 132.0577
## --------------------------------------------------------
## : 114
## : 2
## [1] 134.6731
## --------------------------------------------------------
## : 115
## : 2
## [1] 127.8846
## --------------------------------------------------------
## : 116
## : 2
## [1] 135.1346
## --------------------------------------------------------
## : 117
## : 2
## [1] 134.4615
## --------------------------------------------------------
## : 118
## : 2
## [1] 142.5
## --------------------------------------------------------
## : 119
## : 2
## [1] 134.7885
## --------------------------------------------------------
## : 120
## : 2
## [1] 128.3654
apply(store.df[, 2:9], MARGIN=2, FUN=mean)
## Year Week p1sales p2sales p1price p2price
## 1.5000000 26.5000000 133.0485577 100.1567308 2.5443750 2.6995192
## p1prom p2prom
## 0.1000000 0.1384615
apply(store.df[, 2:9], 2, mean)
## Year Week p1sales p2sales p1price p2price
## 1.5000000 26.5000000 133.0485577 100.1567308 2.5443750 2.6995192
## p1prom p2prom
## 0.1000000 0.1384615
apply(store.df[, 2:9], 2, sd)
## Year Week p1sales p2sales p1price p2price
## 0.5001202 15.0119401 28.3725990 24.4241905 0.2948819 0.3292181
## p1prom p2prom
## 0.3000721 0.3454668
apply(store.df[, 2:9], 2, function(x) { mean(x) - median(x) } )
## Year Week p1sales p2sales p1price p2price p1prom
## 0.0000000 0.0000000 4.0485577 4.1567308 0.0543750 0.1095192 0.1000000
## p2prom
## 0.1384615