1 wykorzystuje najnowsze rozwiÄ…zania technologiczne
2 współpracuje z ośrodkami badawczymi i/lub uczelniami
3 śledzi zachowania firm z branży w Polsce i na świecie
4 pozyskuje najlepszych specjalistów w branży
5 wprowadza zmiany i innowacje nowe w skali kraju lub regionu
6 wprowadza zmiany i innowacje nowe w skali międzynarodowej
## d1
##
## 6 Variables 321 Observations
## ---------------------------------------------------------------------------
## D1_1
## n missing unique Mean
## 318 3 5 3.349
##
## 1 2 3 4 5
## Frequency 29 37 102 94 56
## % 9 12 32 30 18
## ---------------------------------------------------------------------------
## D1_2
## n missing unique Mean
## 320 1 5 1.972
##
## 1 2 3 4 5
## Frequency 173 51 46 32 18
## % 54 16 14 10 6
## ---------------------------------------------------------------------------
## D1_3
## n missing unique Mean
## 320 1 5 3.519
##
## 1 2 3 4 5
## Frequency 26 41 77 93 83
## % 8 13 24 29 26
## ---------------------------------------------------------------------------
## D1_4
## n missing unique Mean
## 319 2 5 2.887
##
## 1 2 3 4 5
## Frequency 62 55 94 73 35
## % 19 17 29 23 11
## ---------------------------------------------------------------------------
## D1_5
## n missing unique Mean
## 316 5 5 2.886
##
## 1 2 3 4 5
## Frequency 69 49 88 69 41
## % 22 16 28 22 13
## ---------------------------------------------------------------------------
## D1_6
## n missing unique Mean
## 317 4 5 1.984
##
## 1 2 3 4 5
## Frequency 169 49 53 27 19
## % 53 15 17 9 6
## ---------------------------------------------------------------------------
## Factor Analysis using method = minres
## Call: fa(r = d1, nfactors = 1)
## Standardized loadings (pattern matrix) based upon correlation matrix
## MR1 h2 u2 com
## D1_1 0.77 0.59 0.41 1
## D1_2 0.48 0.23 0.77 1
## D1_3 0.60 0.36 0.64 1
## D1_4 0.60 0.36 0.64 1
## D1_5 0.78 0.61 0.39 1
## D1_6 0.62 0.39 0.61 1
##
## MR1
## SS loadings 2.53
## Proportion Var 0.42
##
## Mean item complexity = 1
## Test of the hypothesis that 1 factor is sufficient.
##
## The degrees of freedom for the null model are 15 and the objective function was 1.74 with Chi Square of 551.1
## The degrees of freedom for the model are 9 and the objective function was 0.07
##
## The root mean square of the residuals (RMSR) is 0.04
## The df corrected root mean square of the residuals is 0.05
##
## The harmonic number of observations is 317 with the empirical chi square 14.9 with prob < 0.094
## The total number of observations was 321 with MLE Chi Square = 21.69 with prob < 0.0099
##
## Tucker Lewis Index of factoring reliability = 0.96
## RMSEA index = 0.067 and the 90 % confidence intervals are 0.031 0.102
## BIC = -30.25
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy
## MR1
## Correlation of scores with factors 0.91
## Multiple R square of scores with factors 0.83
## Minimum correlation of possible factor scores 0.67
##
## Call:
## grm(data = d1)
##
## Model Summary:
## log.Lik AIC BIC
## -2511 5082 5195
##
## Coefficients:
## $D1_1
## value
## Extrmt1 -1.652
## Extrmt2 -0.972
## Extrmt3 0.103
## Extrmt4 1.141
## Dscrmn 2.422
##
## $D1_2
## value
## Extrmt1 0.185
## Extrmt2 0.902
## Extrmt3 1.738
## Extrmt4 2.830
## Dscrmn 1.178
##
## $D1_3
## value
## Extrmt1 -2.185
## Extrmt2 -1.253
## Extrmt3 -0.199
## Extrmt4 0.985
## Dscrmn 1.481
##
## $D1_4
## value
## Extrmt1 -1.331
## Extrmt2 -0.511
## Extrmt3 0.653
## Extrmt4 1.941
## Dscrmn 1.427
##
## $D1_5
## value
## Extrmt1 -0.942
## Extrmt2 -0.380
## Extrmt3 0.487
## Extrmt4 1.378
## Dscrmn 2.499
##
## $D1_6
## value
## Extrmt1 0.087
## Extrmt2 0.604
## Extrmt3 1.375
## Extrmt4 2.096
## Dscrmn 1.885
##
##
## Integration:
## method: Gauss-Hermite
## quadrature points: 21
##
## Optimization:
## Convergence: 0
## max(|grad|): 0.0087
## quasi-Newton: BFGS
D2: zmienne:
1 Trzymanie się starych, sprawdzonych metod i sposobów działania sprzyja mojej firmie
2 Bieżące sprawy zajmują firmę w takim stopniu, że zwyczajnie nie ma czasu na myślenie o nowościach i wprowadzaniu innowacji
3 Wprowadzanie zmian w firmie jest ryzykowne
4 Wprowadzanie ciągłych zmian jest konieczne - inaczej można stracić klientów
Ciężko rozsądzić, czy lepiej mieć dwa czy jeden wymiar. Chyba jednak lepiej jeden, ale jest to bardzo słaby wskaźnik, i raczej wolałbym te zmienne wrzucać z osobna.
## d2
##
## 4 Variables 321 Observations
## ---------------------------------------------------------------------------
## D2_1
## n missing unique Mean
## 321 0 5 2.872
##
## 1 2 3 4 5
## Frequency 41 64 127 73 16
## % 13 20 40 23 5
## ---------------------------------------------------------------------------
## D2_2
## n missing unique Mean
## 320 1 5 2.528
##
## 1 2 3 4 5
## Frequency 64 97 98 48 13
## % 20 30 31 15 4
## ---------------------------------------------------------------------------
## D2_3
## n missing unique Mean
## 320 1 5 2.566
##
## 1 2 3 4 5
## Frequency 64 78 124 41 13
## % 20 24 39 13 4
## ---------------------------------------------------------------------------
## D2_4
## n missing unique Mean
## 319 2 5 3.762
##
## 1 2 3 4 5
## Frequency 11 32 74 107 95
## % 3 10 23 34 30
## ---------------------------------------------------------------------------
## Factor Analysis using method = minres
## Call: fa(r = d2, nfactors = 1)
## Standardized loadings (pattern matrix) based upon correlation matrix
## MR1 h2 u2 com
## D2_1 0.58 0.33 0.67 1
## D2_2 0.47 0.22 0.78 1
## D2_3 0.39 0.15 0.85 1
## D2_4 -0.35 0.12 0.88 1
##
## MR1
## SS loadings 0.83
## Proportion Var 0.21
##
## Mean item complexity = 1
## Test of the hypothesis that 1 factor is sufficient.
##
## The degrees of freedom for the null model are 6 and the objective function was 0.22 with Chi Square of 69.16
## The degrees of freedom for the model are 2 and the objective function was 0.01
##
## The root mean square of the residuals (RMSR) is 0.03
## The df corrected root mean square of the residuals is 0.05
##
## The harmonic number of observations is 319 with the empirical chi square 3.68 with prob < 0.16
## The total number of observations was 321 with MLE Chi Square = 2.71 with prob < 0.26
##
## Tucker Lewis Index of factoring reliability = 0.966
## RMSEA index = 0.034 and the 90 % confidence intervals are NA 0.121
## BIC = -8.83
## Fit based upon off diagonal values = 0.98
## Measures of factor score adequacy
## MR1
## Correlation of scores with factors 0.72
## Multiple R square of scores with factors 0.53
## Minimum correlation of possible factor scores 0.05
## Factor Analysis using method = minres
## Call: fa(r = d2, nfactors = 2)
## Standardized loadings (pattern matrix) based upon correlation matrix
## MR1 MR2 h2 u2 com
## D2_1 0.28 -0.36 0.31 0.69 1.9
## D2_2 0.38 -0.16 0.23 0.77 1.3
## D2_3 0.53 0.06 0.26 0.74 1.0
## D2_4 0.05 0.51 0.24 0.76 1.0
##
## MR1 MR2
## SS loadings 0.56 0.47
## Proportion Var 0.14 0.12
## Cumulative Var 0.14 0.26
## Proportion Explained 0.54 0.46
## Cumulative Proportion 0.54 1.00
##
## With factor correlations of
## MR1 MR2
## MR1 1.00 -0.51
## MR2 -0.51 1.00
##
## Mean item complexity = 1.3
## Test of the hypothesis that 2 factors are sufficient.
##
## The degrees of freedom for the null model are 6 and the objective function was 0.22 with Chi Square of 69.16
## The degrees of freedom for the model are -1 and the objective function was 0
##
## The root mean square of the residuals (RMSR) is 0
## The df corrected root mean square of the residuals is NA
##
## The harmonic number of observations is 319 with the empirical chi square 0 with prob < NA
## The total number of observations was 321 with MLE Chi Square = 0 with prob < NA
##
## Tucker Lewis Index of factoring reliability = 1.095
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy
## MR1 MR2
## Correlation of scores with factors 0.69 0.66
## Multiple R square of scores with factors 0.47 0.44
## Minimum correlation of possible factor scores -0.06 -0.12
##
## Call:
## grm(data = d2)
##
## Model Summary:
## log.Lik AIC BIC
## -1801 3641 3717
##
## Coefficients:
## $D2_1
## value
## Extrmt1 -1.829
## Extrmt2 -0.682
## Extrmt3 0.961
## Extrmt4 2.706
## Dscrmn 1.363
##
## $D2_2
## value
## Extrmt1 -1.588
## Extrmt2 0.028
## Extrmt3 1.669
## Extrmt4 3.478
## Dscrmn 1.044
##
## $D2_3
## value
## Extrmt1 -1.913
## Extrmt2 -0.282
## Extrmt3 2.222
## Extrmt4 4.239
## Dscrmn 0.811
##
## $D2_4
## value
## Extrmt1 4.868
## Extrmt2 2.780
## Extrmt3 0.827
## Extrmt4 -1.310
## Dscrmn -0.732
##
##
## Integration:
## method: Gauss-Hermite
## quadrature points: 21
##
## Optimization:
## Convergence: 0
## max(|grad|): 0.012
## quasi-Newton: BFGS
1 Komputery i maszyny pozwalają zwiększyć wydajność pracy i zracjonalizować zatrudnienie
2 Małym firmom coraz trudniej jest konkurować z dużymi
3 To, co wcześniej było sprzedawane jako produkt, zaczyna być oferowane jako usługa (np. w wynajmie, abonamencie)
4 Informacje i dane stają się istotnymi i wartościowymi towarami
5 Firmy mogą samodzielnie wykorzystać internet do budowy wizerunku i komunikacji z klientami
6 Nasila się rywalizacja o najlepszych, wykwalifikowanych specjalistów
7 Starsza kadra ma problemy z dostosowaniem się do nowych technologii i warunków
8 Dla klientów i odbiorców coraz istotniejsze stają się kwestie związane z ekologią i zdrowym stylem życia
9 Praca zdalna i outsourcing stajÄ… siÄ™ coraz bardziej rozpowszechnione
10 Zwiększa się konkurencja ze strony firm z innych regionów i krajów, które zyskują dostęp do klientów np. przez internet
11 W wyniku rozwoju nowych technologii coraz łatwiejszy staje się dostęp do wcześniej nieosiągalnych rynków
12 Rośnie udział klientów w kształtowaniu produktów i usług
13 Nowe technologie sprawiają, że niektóre z wcześniejszych produktów i usług stają się nieopłacalne
##
## Call:
## grm(data = b1[, 1:13])
##
## Model Summary:
## log.Lik AIC BIC
## -5655 11439 11684
##
## Coefficients:
## $B1_1
## value
## Extrmt1 -3.876
## Extrmt2 -2.573
## Extrmt3 -1.225
## Extrmt4 0.042
## Dscrmn 1.138
##
## $B1_2
## value
## Extrmt1 -7.220
## Extrmt2 -4.537
## Extrmt3 -1.153
## Extrmt4 1.889
## Dscrmn 0.296
##
## $B1_3
## value
## Extrmt1 -0.891
## Extrmt2 -0.241
## Extrmt3 0.932
## Extrmt4 2.519
## Dscrmn 1.311
##
## $B1_4
## value
## Extrmt1 -2.788
## Extrmt2 -2.098
## Extrmt3 -1.125
## Extrmt4 0.146
## Dscrmn 1.424
##
## $B1_5
## value
## Extrmt1 -3.451
## Extrmt2 -2.336
## Extrmt3 -1.277
## Extrmt4 0.034
## Dscrmn 1.296
##
## $B1_6
## value
## Extrmt1 -2.702
## Extrmt2 -1.792
## Extrmt3 -0.509
## Extrmt4 0.872
## Dscrmn 1.325
##
## $B1_7
## value
## Extrmt1 -3.449
## Extrmt2 -1.438
## Extrmt3 1.011
## Extrmt4 5.801
## Dscrmn 0.424
##
## $B1_8
## value
## Extrmt1 -2.930
## Extrmt2 -1.617
## Extrmt3 0.340
## Extrmt4 2.313
## Dscrmn 0.739
##
## $B1_9
## value
## Extrmt1 -1.888
## Extrmt2 -0.876
## Extrmt3 0.096
## Extrmt4 1.713
## Dscrmn 1.108
##
## $B1_10
## value
## Extrmt1 -2.866
## Extrmt2 -1.580
## Extrmt3 -0.032
## Extrmt4 1.689
## Dscrmn 0.724
##
## $B1_11
## value
## Extrmt1 -2.064
## Extrmt2 -1.152
## Extrmt3 -0.316
## Extrmt4 0.801
## Dscrmn 1.510
##
## $B1_12
## value
## Extrmt1 -2.751
## Extrmt2 -1.688
## Extrmt3 -0.432
## Extrmt4 1.360
## Dscrmn 1.210
##
## $B1_13
## value
## Extrmt1 -2.361
## Extrmt2 -1.337
## Extrmt3 0.168
## Extrmt4 1.677
## Dscrmn 0.895
##
##
## Integration:
## method: Gauss-Hermite
## quadrature points: 21
##
## Optimization:
## Convergence: 0
## max(|grad|): 0.013
## quasi-Newton: BFGS
##
## Call:
## grm(data = b2[, 1:13])
##
## Model Summary:
## log.Lik AIC BIC
## -2621 5372 5617
##
## Coefficients:
## $B2_1
## value
## Extrmt1 3.298
## Extrmt2 2.518
## Extrmt3 0.867
## Extrmt4 -1.179
## Dscrmn -1.173
##
## $B2_2
## value
## Extrmt1 2.325
## Extrmt2 1.405
## Extrmt3 0.232
## Extrmt4 -1.307
## Dscrmn -1.637
##
## $B2_3
## value
## Extrmt1 1.408
## Extrmt2 1.036
## Extrmt3 0.227
## Extrmt4 -1.439
## Dscrmn -1.802
##
## $B2_4
## value
## Extrmt1 2.922
## Extrmt2 2.112
## Extrmt3 1.013
## Extrmt4 -0.491
## Dscrmn -1.802
##
## $B2_5
## value
## Extrmt1 4.596
## Extrmt2 2.829
## Extrmt3 1.389
## Extrmt4 -0.238
## Dscrmn -1.424
##
## $B2_6
## value
## Extrmt1 4.343
## Extrmt2 2.525
## Extrmt3 1.055
## Extrmt4 -0.941
## Dscrmn -1.159
##
## $B2_7
## value
## Extrmt1 2.751
## Extrmt2 1.550
## Extrmt3 0.426
## Extrmt4 -1.880
## Dscrmn -1.229
##
## $B2_8
## value
## Extrmt1 3.722
## Extrmt2 2.770
## Extrmt3 1.064
## Extrmt4 -1.205
## Dscrmn -1.096
##
## $B2_9
## value
## Extrmt1 2.610
## Extrmt2 1.440
## Extrmt3 0.419
## Extrmt4 -1.478
## Dscrmn -1.528
##
## $B2_10
## value
## Extrmt1 1.734
## Extrmt2 1.357
## Extrmt3 0.614
## Extrmt4 -0.693
## Dscrmn -2.358
##
## $B2_11
## value
## Extrmt1 2.165
## Extrmt2 1.526
## Extrmt3 0.465
## Extrmt4 -0.604
## Dscrmn -2.862
##
## $B2_12
## value
## Extrmt1 2.654
## Extrmt2 1.721
## Extrmt3 0.689
## Extrmt4 -1.087
## Dscrmn -1.886
##
## $B2_13
## value
## Extrmt1 4.517
## Extrmt2 2.741
## Extrmt3 0.731
## Extrmt4 -1.270
## Dscrmn -1.074
##
##
## Integration:
## method: Gauss-Hermite
## quadrature points: 21
##
## Optimization:
## Convergence: 0
## max(|grad|): 0.019
## quasi-Newton: BFGS