Section 2.1
2 number; percentages
3 1.00
5
washing your hands; 61%
drinking juice; 2%
25%
13
datt <- c(125, 324, 552, 1257, 2518)
rel.freqq <- datt/sum(datt)
categoriess <- c("Never", "Rarely", "Sometimes", "Most of time", "Always")
answerr <- data.frame(categoriess,rel.freqq)
answerr
## categoriess rel.freqq
## 1 Never 0.02617253
## 2 Rarely 0.06783920
## 3 Sometimes 0.11557789
## 4 Most of time 0.26319095
## 5 Always 0.52721943
2518/4776 = .527 = 52.7%
never = 125/4776 = .026 = 2.6% rarely= 324/4776 = .067 = 6.7%
barplot(datt,main="Seat Belt Usage",names=categoriess, col =c("red","blue","green","yellow","orange"))
barplot(rel.freqq,main="Seat Belt Usage",names=categoriess, col =c("red","blue","green","yellow","orange"))
pie(datt,main="Seat Belt Usage",labels=categoriess, col =c("red","blue","green","yellow","orange"))
15
dat <- c(377,192,132,81,243)
rel.freq <- dat/sum(dat)
categories <- c("More 1", "Up to 1", "Few a week", "Few a month", "Never")
answer <- data.frame(categories,rel.freq)
answer
## categories rel.freq
## 1 More 1 0.36780488
## 2 Up to 1 0.18731707
## 3 Few a week 0.12878049
## 4 Few a month 0.07902439
## 5 Never 0.23707317
243/1025 = .237 = 23.7%
barplot(dat,main="Internet Usage",names=categories, col =c("red","blue","green","yellow","orange"))
barplot(rel.freq,main="Internet Usage(Relative Freq)",names=categories, col =c("red","blue","green","yellow","orange"))
pie(dat,main="Internet Usage",labels=categories, col =c("red","blue","green","yellow","orange"))
Section 2.2
7 false
8 false
9
8
2
15
11-7 = 4
15/100 = .15 = 15%
bell shaped
10
4
9
9/52 = .173 = 17.3%
skewed right
13
skewed right; can’t make less than zero
bell shape; most will be in the middle and some outliers on both ends
skewed right; can’t have zero people in a huse so it can’t go less than 1 to the left
skewed left; will increase as age increases
14
bell shape; should be pretty even through the year with a few outliers
bell shaped; have to fall in a certain age range to be in school
skewed left; likely to increase with age
bell shaped; most men are aound the same height with a few outliers
15
dattt <- c(16, 18, 12, 3, 1)
rel.freqqq <- dattt/sum(dattt)
categoriesss <- c("Zero", "One", "Two", "Three", "Four")
answerrr <- data.frame(categoriesss,rel.freqqq)
answerrr
## categoriesss rel.freqqq
## 1 Zero 0.32
## 2 One 0.36
## 3 Two 0.24
## 4 Three 0.06
## 5 Four 0.02
12/52 = .231 = 23.1%
30/52 = .576 = 57.6%
16
free_throws <- c(16, 11, 9, 7, 2,3,0,1,0,1)
rel.freqqq <- free_throws/sum(free_throws)
categoriesss <- c("1", "2", "3", "4","5","6","7","8","9","10")
answerrr <- data.frame(categoriesss,rel.freqqq)
answerrr
## categoriesss rel.freqqq
## 1 1 0.32
## 2 2 0.22
## 3 3 0.18
## 4 4 0.14
## 5 5 0.04
## 6 6 0.06
## 7 7 0.00
## 8 8 0.02
## 9 9 0.00
## 10 10 0.02
7/50 = .14 = 14%
1/50 = .02 = 2%
7/50 = .14 = 14%
25
discrete; its countable
tv <- c(1, 1, 1, 2, 1,
1, 2, 2, 3, 2,
4, 2, 2, 2, 2,
2, 4, 1, 2, 2,
3, 1, 3, 1, 2,
3, 1, 1, 2, 1,
5, 0 ,1, 3, 3,
1, 3, 3, 2, 1)
#table(tv)
tv <- c(1,14,14,8,2,1)
tv.freq <- tv/sum(tv)
tv.cat <- c("0", "1", "2", "3","4","5")
freq.tab <- data.frame(tv.cat,tv)
rfreq.tab <- data.frame(tv.cat,tv.freq)
freq.tab
## tv.cat tv
## 1 0 1
## 2 1 14
## 3 2 14
## 4 3 8
## 5 4 2
## 6 5 1
rfreq.tab
## tv.cat tv.freq
## 1 0 0.025
## 2 1 0.350
## 3 2 0.350
## 4 3 0.200
## 5 4 0.050
## 6 5 0.025
8/40 = .2 = 20%
3/40 = .075 = 7.5%