Fundamental Math

IT100 Session 3: Mathematical operations
13 Sept 2017

Basic arithmetic concepts

Agenda for Today

Basic operations

  • Precedent of operators
  • Exponents
  • Fractions
  • Addition and subtraction
  • Multiplication and division

Basic properties

  • Identity
  • Reciprocal
  • Associative property
  • Communicative property
  • Distributive property

Unit 1. Order of Precedence

So what is the answer?

\[ \large\begin{eqnarray} 3 \times 4 - 2 \times 5 & = & \hbox{............ (1)}\\ & & \\ (3 \times 4) - (2 \times 5) & = & \hbox{............ (2)}\\ \left((3 \times 4) - 2\right) \times 5 & = & \hbox{............ (3)}\\ 3 \times (4 - 2) \times 5 & = & \hbox{............ (4)}\\ 3 \times \left(4 - (2 \times 5)\right) & = & \hbox{............ (5)}\\ \end{eqnarray} \]

So what is the standard order?

Mnemonic Key for Memorization

  • Please
  • Entertain
  • My / Dear
  • Aunt / Sally!!!

Standard Math Precedence

  • Parenthesis
  • Exponents
  • Multiplication / Division
  • Addition / Substraction

Challenge questions

\[ \large\begin{eqnarray} 10 - 2^2 + 3 &=& \hbox{........... (1)}\\ & & \\ {3^2 \times 7 - 3 + 6 \over 4 + 2} &=& \hbox{........... (2)}\\ \end{eqnarray} \]

Unit 2: Exponents

Overview of exponents

\[ \large\begin{eqnarray} 10^2 \times 10^3 & = & 10^5\\ 100 \times 1000 & = & 100,000\\ & & \\ {10^{5}\over 10^2} = 10^5 \times 10^{-2} & = & 10^{(5-2)} = 10^3\\ & & \\ \left(10^3\right)^2 = 10^3 \times 10^3 & = & 10^{3+3} = 10^6 \\ \end{eqnarray} \]

Multiplication with exponents

\[ \large\begin{eqnarray} 10^2 \times 10^3 \times 10^4 & = & 10^{(2 + 3 + 4)} = 10^7\\ \\ a^3 \times a^2 \times a & = & a^{(3 + 2 + 1)} = a^6\\ \\ a^x \times a^y \times a^z & = & a^{(x+y+z)}\\ \end{eqnarray} \]

Division with exponents

\[ \large\begin{eqnarray} {a^{7} \over a^{2}} = a^7 \times a^{-2} & = & a^{(7-2)} = a^5\\ \\ {a^{x} \over a^{y}} = a^x \times a^{-y} & = & a^{(x-y)}\\ \end{eqnarray} \]

Challenge questions

Simplify the following:

\[ \large\begin{eqnarray} {1 \over \sqrt{x}} & = & \hbox{......... (1)}\\ & & \\ {2^x \times 8^2 \over 16} & = & \hbox{......... (2)}\\ \end{eqnarray} \]

3) The human heart beats about 70 times per min. Express in scientific notation, the number of times a heart would be expected to beat in 72 years.

Unit 3: Fractions

Addition and subtraction with fractions

\[ \large\begin{eqnarray} {1\over 2} + {1\over 4} - {3\over 8} = {4 \over 8} + {2\over 8} - {3\over 8} & = & {4 + 2 -3 \over 8} = {3\over 8}\\ & & \\ 1{1\over 3} + 4{1\over6} = {3 + 1\over 3}+ {24+1\over 6} = {4\over 3} + {25\over 6} & = & {8 + 25\over 6} = {33\over 6} = {11 \over 2}\\ \end{eqnarray} \]

Multiplication and division of fractions

\[ \large\begin{eqnarray} {1\over 2} \times {2\over 5} \times {3\over 8} & = & {1 \times 2 \times 3 \over 2 \times 5 \times 8} = {6 \over 80} = {3\over 40}\\ & & \\ {2{1 \over 3} \over 4{2\over 5}} = {{7\over 3}\over {22\over 5}} & = & {7 \times 5\over 22 \times 3} = {35\over 66}\\ \end{eqnarray} \]

Challenge questions

\[ \large\begin{eqnarray} 2{2\over 3} \times {1\over 5} + 1{1\over 2} \div 2{1\over 2} & = & \hbox{.......... (1)}\\ & & \\ {{\left({1\over 3} \right)^2}\times 4{1\over 2}\over 3} & = & \hbox{.......... (2)}\\ \end{eqnarray} \]

Unit 4: Identity

Definition of Identity

Identity for an operation is the quantity that will not change the value of number

\[ \large 3 \times 1 = 3 \]

Problem of Identity

Give an example and determine the value of \( \large I \) for each relationship.

\[ \large\begin{array}{rlcrl} a \times I = a & \hbox{.......... (1)} & & {a \over I} = a & \hbox{.......... (2)}\\ a - I = a & \hbox{.......... (3)} & & a + I = a & \hbox{.......... (4)}\\ a^I = a & \hbox{.......... (5)} & & a \times a^I = a & \hbox{.......... (6)}\\ \end{array} \]

Unit 5: Reciprocal

Definition of Reciprocal

A quantity that will cause an operation result in the identity value.

\[ \large 4 \times {1\over 4} = 1 \]

Determining the reciprocal

Identify the reciprocal for each relationship.

\[ \large\begin{array}{rlcrl} a \times I = a & \hbox{.......... (1)} & & {a \over I} = a & \hbox{.......... (2)}\\ a - I = a & \hbox{.......... (3)} & & a + I = a & \hbox{.......... (4)}\\ a^I = a & \hbox{.......... (5)} & & a \times a^I = a & \hbox{.......... (6)}\\ \end{array} \]

Unit 6: Basic laws of Math

Associative Law

\[ \large\begin{eqnarray} (a + b) + c & = & a + (b + c)\\ (1 + 3) + 4 & = & 1 + (3 + 4)\\ 4 + 4 & = & 1 + 7\\ & & \\ (ab)c &=& a(bc)\\ (2\times 3) \times 5 & = & 2 \times (3 \times 5)\\ 6 \times 5 & = & 2 \times 15\\ \end{eqnarray} \]

Communicative Law

Addition

\[ \large a + b = b + a \]

\[ \large 2 + 3 = 3 + 2 \]

Multiplication

\[ \large 2 \times 3 = 3 \times 2 \]

\[ \large a \times b = b \times a \]

Distributive Law

Numerical \[ \large\begin{eqnarray} 3(5 - 2) & = & 3\times 5 - 3\times 2\\ 3\times 3 & = & 15 - 6\\ 9 &=& 9\\ & & \\ 2(3 + 5) & = & 2\times 3 + 2\times 5\\ 2\times 8 &=& 6 + 10\\ 16 &=& 16 \\ \end{eqnarray} \]

Algebratic \[ \large a(b - c) = ab - ac \]

\[ \large a(b + c) = ab + ac \]

Producing a trail mix

Trail Mix

Trail Mix

Recipe

Volume Ingredient Cost / 250 gm
100 gm roasted almonds $4.00
100 gm roasted pecans $6.50
100 gm roasted cashews $4.75
100 gm sunflower seeds $0.40
100 gm pumpkins seeds $0.75
150 gm dried cherries $3.90
200 gm raisin $5.60
100 gm cranberries $6.90
200 gm chocolate chips $3.50
10 gm sea salt $0.35
5 gm cinnamon $8.00
5 gm grown nutmeg $9.50

Challenge Questions

  • What is the cost per kilo? ………… (1)

  • If the market value is US$25.00 per 500 gm, what is the profit margin? ………… (2)

# PREPARATION FOR NEXT TIME

  • Basic algebraic concepts
  • Simplification of fractions
  • Implication of equations
  • Solving equations