Working Directory

setwd("D:/R-BA/R-Scripts")

Introduction Random Forest

The steps to predict using Random Forest:
* Step 1
* Step 2

Problem Defination
Predict whether an email will be considered as spam or not Using Random Forest

Load Libs

library(plyr)
library(tidyr)
library(dplyr)
library(ggplot2)
#install.packages("caret")
library(caret)
#install.packages("randomForest")
library(randomForest)
#install.packages("gbm")
library(gbm)
#install.packages("corrgram")
library(corrgram)

Functions

detectNA <- function(inp) {
  sum(is.na(inp))
}
detectCor <- function(x) {
  cor(as.numeric(dfrDataset[, x]), 
    as.numeric(dfrDataset$status), 
    method="spearman")
}

Load Dataset

dfrDataset <- read.csv("D:/R-BA/R-Scripts/data/spambase.csv", sep=",", header=T, stringsAsFactors=T)
head(dfrDataset)
##   word_freq_make word_freq_address word_freq_all word_freq_3d
## 1           0.00              0.64          0.64            0
## 2           0.21              0.28          0.50            0
## 3           0.06              0.00          0.71            0
## 4           0.00              0.00          0.00            0
## 5           0.00              0.00          0.00            0
## 6           0.00              0.00          0.00            0
##   word_freq_our word_freq_over word_freq_remove word_freq_internet
## 1          0.32           0.00             0.00               0.00
## 2          0.14           0.28             0.21               0.07
## 3          1.23           0.19             0.19               0.12
## 4          0.63           0.00             0.31               0.63
## 5          0.63           0.00             0.31               0.63
## 6          1.85           0.00             0.00               1.85
##   word_freq_order word_freq_mail word_freq_receive word_freq_will
## 1            0.00           0.00              0.00           0.64
## 2            0.00           0.94              0.21           0.79
## 3            0.64           0.25              0.38           0.45
## 4            0.31           0.63              0.31           0.31
## 5            0.31           0.63              0.31           0.31
## 6            0.00           0.00              0.00           0.00
##   word_freq_people word_freq_report word_freq_addresses word_freq_free
## 1             0.00             0.00                0.00           0.32
## 2             0.65             0.21                0.14           0.14
## 3             0.12             0.00                1.75           0.06
## 4             0.31             0.00                0.00           0.31
## 5             0.31             0.00                0.00           0.31
## 6             0.00             0.00                0.00           0.00
##   word_freq_business word_freq_email word_freq_you word_freq_credit
## 1               0.00            1.29          1.93             0.00
## 2               0.07            0.28          3.47             0.00
## 3               0.06            1.03          1.36             0.32
## 4               0.00            0.00          3.18             0.00
## 5               0.00            0.00          3.18             0.00
## 6               0.00            0.00          0.00             0.00
##   word_freq_your word_freq_font word_freq_000 word_freq_money word_freq_hp
## 1           0.96              0          0.00            0.00            0
## 2           1.59              0          0.43            0.43            0
## 3           0.51              0          1.16            0.06            0
## 4           0.31              0          0.00            0.00            0
## 5           0.31              0          0.00            0.00            0
## 6           0.00              0          0.00            0.00            0
##   word_freq_hpl word_freq_george word_freq_650 word_freq_lab
## 1             0                0             0             0
## 2             0                0             0             0
## 3             0                0             0             0
## 4             0                0             0             0
## 5             0                0             0             0
## 6             0                0             0             0
##   word_freq_labs word_freq_telnet word_freq_857 word_freq_data
## 1              0                0             0              0
## 2              0                0             0              0
## 3              0                0             0              0
## 4              0                0             0              0
## 5              0                0             0              0
## 6              0                0             0              0
##   word_freq_415 word_freq_85 word_freq_technology word_freq_1999
## 1             0            0                    0           0.00
## 2             0            0                    0           0.07
## 3             0            0                    0           0.00
## 4             0            0                    0           0.00
## 5             0            0                    0           0.00
## 6             0            0                    0           0.00
##   word_freq_parts word_freq_pm word_freq_direct word_freq_cs
## 1               0            0             0.00            0
## 2               0            0             0.00            0
## 3               0            0             0.06            0
## 4               0            0             0.00            0
## 5               0            0             0.00            0
## 6               0            0             0.00            0
##   word_freq_meeting word_freq_original word_freq_project word_freq_re
## 1                 0               0.00                 0         0.00
## 2                 0               0.00                 0         0.00
## 3                 0               0.12                 0         0.06
## 4                 0               0.00                 0         0.00
## 5                 0               0.00                 0         0.00
## 6                 0               0.00                 0         0.00
##   word_freq_edu word_freq_table word_freq_conference char_freq_.
## 1          0.00               0                    0        0.00
## 2          0.00               0                    0        0.00
## 3          0.06               0                    0        0.01
## 4          0.00               0                    0        0.00
## 5          0.00               0                    0        0.00
## 6          0.00               0                    0        0.00
##   char_freq_..1 char_freq_..2 char_freq_..3 char_freq_..4 char_freq_..5
## 1         0.000             0         0.778         0.000         0.000
## 2         0.132             0         0.372         0.180         0.048
## 3         0.143             0         0.276         0.184         0.010
## 4         0.137             0         0.137         0.000         0.000
## 5         0.135             0         0.135         0.000         0.000
## 6         0.223             0         0.000         0.000         0.000
##   capital_run_length_average capital_run_length_longest
## 1                      3.756                         61
## 2                      5.114                        101
## 3                      9.821                        485
## 4                      3.537                         40
## 5                      3.537                         40
## 6                      3.000                         15
##   capital_run_length_total status
## 1                      278      1
## 2                     1028      1
## 3                     2259      1
## 4                      191      1
## 5                      191      1
## 6                       54      1

Dataframe Stucture

str(dfrDataset)
## 'data.frame':    4601 obs. of  58 variables:
##  $ word_freq_make            : num  0 0.21 0.06 0 0 0 0 0 0.15 0.06 ...
##  $ word_freq_address         : num  0.64 0.28 0 0 0 0 0 0 0 0.12 ...
##  $ word_freq_all             : num  0.64 0.5 0.71 0 0 0 0 0 0.46 0.77 ...
##  $ word_freq_3d              : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ word_freq_our             : num  0.32 0.14 1.23 0.63 0.63 1.85 1.92 1.88 0.61 0.19 ...
##  $ word_freq_over            : num  0 0.28 0.19 0 0 0 0 0 0 0.32 ...
##  $ word_freq_remove          : num  0 0.21 0.19 0.31 0.31 0 0 0 0.3 0.38 ...
##  $ word_freq_internet        : num  0 0.07 0.12 0.63 0.63 1.85 0 1.88 0 0 ...
##  $ word_freq_order           : num  0 0 0.64 0.31 0.31 0 0 0 0.92 0.06 ...
##  $ word_freq_mail            : num  0 0.94 0.25 0.63 0.63 0 0.64 0 0.76 0 ...
##  $ word_freq_receive         : num  0 0.21 0.38 0.31 0.31 0 0.96 0 0.76 0 ...
##  $ word_freq_will            : num  0.64 0.79 0.45 0.31 0.31 0 1.28 0 0.92 0.64 ...
##  $ word_freq_people          : num  0 0.65 0.12 0.31 0.31 0 0 0 0 0.25 ...
##  $ word_freq_report          : num  0 0.21 0 0 0 0 0 0 0 0 ...
##  $ word_freq_addresses       : num  0 0.14 1.75 0 0 0 0 0 0 0.12 ...
##  $ word_freq_free            : num  0.32 0.14 0.06 0.31 0.31 0 0.96 0 0 0 ...
##  $ word_freq_business        : num  0 0.07 0.06 0 0 0 0 0 0 0 ...
##  $ word_freq_email           : num  1.29 0.28 1.03 0 0 0 0.32 0 0.15 0.12 ...
##  $ word_freq_you             : num  1.93 3.47 1.36 3.18 3.18 0 3.85 0 1.23 1.67 ...
##  $ word_freq_credit          : num  0 0 0.32 0 0 0 0 0 3.53 0.06 ...
##  $ word_freq_your            : num  0.96 1.59 0.51 0.31 0.31 0 0.64 0 2 0.71 ...
##  $ word_freq_font            : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ word_freq_000             : num  0 0.43 1.16 0 0 0 0 0 0 0.19 ...
##  $ word_freq_money           : num  0 0.43 0.06 0 0 0 0 0 0.15 0 ...
##  $ word_freq_hp              : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ word_freq_hpl             : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ word_freq_george          : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ word_freq_650             : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ word_freq_lab             : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ word_freq_labs            : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ word_freq_telnet          : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ word_freq_857             : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ word_freq_data            : num  0 0 0 0 0 0 0 0 0.15 0 ...
##  $ word_freq_415             : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ word_freq_85              : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ word_freq_technology      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ word_freq_1999            : num  0 0.07 0 0 0 0 0 0 0 0 ...
##  $ word_freq_parts           : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ word_freq_pm              : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ word_freq_direct          : num  0 0 0.06 0 0 0 0 0 0 0 ...
##  $ word_freq_cs              : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ word_freq_meeting         : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ word_freq_original        : num  0 0 0.12 0 0 0 0 0 0.3 0 ...
##  $ word_freq_project         : num  0 0 0 0 0 0 0 0 0 0.06 ...
##  $ word_freq_re              : num  0 0 0.06 0 0 0 0 0 0 0 ...
##  $ word_freq_edu             : num  0 0 0.06 0 0 0 0 0 0 0 ...
##  $ word_freq_table           : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ word_freq_conference      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ char_freq_.               : num  0 0 0.01 0 0 0 0 0 0 0.04 ...
##  $ char_freq_..1             : num  0 0.132 0.143 0.137 0.135 0.223 0.054 0.206 0.271 0.03 ...
##  $ char_freq_..2             : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ char_freq_..3             : num  0.778 0.372 0.276 0.137 0.135 0 0.164 0 0.181 0.244 ...
##  $ char_freq_..4             : num  0 0.18 0.184 0 0 0 0.054 0 0.203 0.081 ...
##  $ char_freq_..5             : num  0 0.048 0.01 0 0 0 0 0 0.022 0 ...
##  $ capital_run_length_average: num  3.76 5.11 9.82 3.54 3.54 ...
##  $ capital_run_length_longest: int  61 101 485 40 40 15 4 11 445 43 ...
##  $ capital_run_length_total  : int  278 1028 2259 191 191 54 112 49 1257 749 ...
##  $ status                    : int  1 1 1 1 1 1 1 1 1 1 ...

Dataframe Summary

lapply(dfrDataset, FUN=summary)
## $word_freq_make
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1046  0.0000  4.5400 
## 
## $word_freq_address
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   0.000   0.000   0.213   0.000  14.280 
## 
## $word_freq_all
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.2807  0.4200  5.1000 
## 
## $word_freq_3d
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.00000  0.00000  0.00000  0.06542  0.00000 42.81000 
## 
## $word_freq_our
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.3122  0.3800 10.0000 
## 
## $word_freq_over
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.0959  0.0000  5.8800 
## 
## $word_freq_remove
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1142  0.0000  7.2700 
## 
## $word_freq_internet
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1053  0.0000 11.1100 
## 
## $word_freq_order
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.09007 0.00000 5.26000 
## 
## $word_freq_mail
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.2394  0.1600 18.1800 
## 
## $word_freq_receive
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.05982 0.00000 2.61000 
## 
## $word_freq_will
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.1000  0.5417  0.8000  9.6700 
## 
## $word_freq_people
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.09393 0.00000 5.55000 
## 
## $word_freq_report
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.00000  0.00000  0.00000  0.05863  0.00000 10.00000 
## 
## $word_freq_addresses
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.0492  0.0000  4.4100 
## 
## $word_freq_free
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.2488  0.1000 20.0000 
## 
## $word_freq_business
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1426  0.0000  7.1400 
## 
## $word_freq_email
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1847  0.0000  9.0900 
## 
## $word_freq_you
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   0.000   1.310   1.662   2.640  18.750 
## 
## $word_freq_credit
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.00000  0.00000  0.00000  0.08558  0.00000 18.18000 
## 
## $word_freq_your
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.2200  0.8098  1.2700 11.1100 
## 
## $word_freq_font
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1212  0.0000 17.1000 
## 
## $word_freq_000
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1016  0.0000  5.4500 
## 
## $word_freq_money
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.00000  0.00000  0.00000  0.09427  0.00000 12.50000 
## 
## $word_freq_hp
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.5495  0.0000 20.8300 
## 
## $word_freq_hpl
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.2654  0.0000 16.6600 
## 
## $word_freq_george
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.7673  0.0000 33.3300 
## 
## $word_freq_650
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1248  0.0000  9.0900 
## 
## $word_freq_lab
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.00000  0.00000  0.00000  0.09892  0.00000 14.28000 
## 
## $word_freq_labs
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1029  0.0000  5.8800 
## 
## $word_freq_telnet
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.00000  0.00000  0.00000  0.06475  0.00000 12.50000 
## 
## $word_freq_857
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.04705 0.00000 4.76000 
## 
## $word_freq_data
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.00000  0.00000  0.00000  0.09723  0.00000 18.18000 
## 
## $word_freq_415
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.04784 0.00000 4.76000 
## 
## $word_freq_85
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1054  0.0000 20.0000 
## 
## $word_freq_technology
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.09748 0.00000 7.69000 
## 
## $word_freq_1999
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   0.000   0.000   0.137   0.000   6.890 
## 
## $word_freq_parts
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.0132  0.0000  8.3300 
## 
## $word_freq_pm
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.00000  0.00000  0.00000  0.07863  0.00000 11.11000 
## 
## $word_freq_direct
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.06483 0.00000 4.76000 
## 
## $word_freq_cs
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.04367 0.00000 7.14000 
## 
## $word_freq_meeting
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1323  0.0000 14.2800 
## 
## $word_freq_original
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.0461  0.0000  3.5700 
## 
## $word_freq_project
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.0792  0.0000 20.0000 
## 
## $word_freq_re
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.3012  0.1100 21.4200 
## 
## $word_freq_edu
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1798  0.0000 22.0500 
## 
## $word_freq_table
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## 0.000000 0.000000 0.000000 0.005444 0.000000 2.170000 
## 
## $word_freq_conference
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.00000  0.00000  0.00000  0.03187  0.00000 10.00000 
## 
## $char_freq_.
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.03857 0.00000 4.38500 
## 
## $char_freq_..1
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   0.000   0.065   0.139   0.188   9.752 
## 
## $char_freq_..2
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.01698 0.00000 4.08100 
## 
## $char_freq_..3
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.2691  0.3150 32.4800 
## 
## $char_freq_..4
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.07581 0.05200 6.00300 
## 
## $char_freq_..5
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.00000  0.00000  0.00000  0.04424  0.00000 19.83000 
## 
## $capital_run_length_average
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##    1.000    1.588    2.276    5.192    3.706 1102.000 
## 
## $capital_run_length_longest
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    1.00    6.00   15.00   52.17   43.00 9989.00 
## 
## $capital_run_length_total
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     1.0    35.0    95.0   283.3   266.0 15840.0 
## 
## $status
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   0.000   0.000   0.394   1.000   1.000

Missing Data

lapply(dfrDataset, FUN=detectNA)
## $word_freq_make
## [1] 0
## 
## $word_freq_address
## [1] 0
## 
## $word_freq_all
## [1] 0
## 
## $word_freq_3d
## [1] 0
## 
## $word_freq_our
## [1] 0
## 
## $word_freq_over
## [1] 0
## 
## $word_freq_remove
## [1] 0
## 
## $word_freq_internet
## [1] 0
## 
## $word_freq_order
## [1] 0
## 
## $word_freq_mail
## [1] 0
## 
## $word_freq_receive
## [1] 0
## 
## $word_freq_will
## [1] 0
## 
## $word_freq_people
## [1] 0
## 
## $word_freq_report
## [1] 0
## 
## $word_freq_addresses
## [1] 0
## 
## $word_freq_free
## [1] 0
## 
## $word_freq_business
## [1] 0
## 
## $word_freq_email
## [1] 0
## 
## $word_freq_you
## [1] 0
## 
## $word_freq_credit
## [1] 0
## 
## $word_freq_your
## [1] 0
## 
## $word_freq_font
## [1] 0
## 
## $word_freq_000
## [1] 0
## 
## $word_freq_money
## [1] 0
## 
## $word_freq_hp
## [1] 0
## 
## $word_freq_hpl
## [1] 0
## 
## $word_freq_george
## [1] 0
## 
## $word_freq_650
## [1] 0
## 
## $word_freq_lab
## [1] 0
## 
## $word_freq_labs
## [1] 0
## 
## $word_freq_telnet
## [1] 0
## 
## $word_freq_857
## [1] 0
## 
## $word_freq_data
## [1] 0
## 
## $word_freq_415
## [1] 0
## 
## $word_freq_85
## [1] 0
## 
## $word_freq_technology
## [1] 0
## 
## $word_freq_1999
## [1] 0
## 
## $word_freq_parts
## [1] 0
## 
## $word_freq_pm
## [1] 0
## 
## $word_freq_direct
## [1] 0
## 
## $word_freq_cs
## [1] 0
## 
## $word_freq_meeting
## [1] 0
## 
## $word_freq_original
## [1] 0
## 
## $word_freq_project
## [1] 0
## 
## $word_freq_re
## [1] 0
## 
## $word_freq_edu
## [1] 0
## 
## $word_freq_table
## [1] 0
## 
## $word_freq_conference
## [1] 0
## 
## $char_freq_.
## [1] 0
## 
## $char_freq_..1
## [1] 0
## 
## $char_freq_..2
## [1] 0
## 
## $char_freq_..3
## [1] 0
## 
## $char_freq_..4
## [1] 0
## 
## $char_freq_..5
## [1] 0
## 
## $capital_run_length_average
## [1] 0
## 
## $capital_run_length_longest
## [1] 0
## 
## $capital_run_length_total
## [1] 0
## 
## $status
## [1] 0

Check output

dfrStatus <- summarise(group_by(dfrDataset, status), count=n()) 
ggplot(dfrStatus, aes(x=status, y=count)) +
    geom_bar(stat="identity", aes(fill=count)) +
    labs(title="Status Frequency Distribution") +
    labs(x="Status") +
    labs(y="Counts")

Find Corelations

## find correlations
vcnCorsData <- abs(sapply(colnames(dfrDataset), detectCor))
summary(vcnCorsData)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## 0.002525 0.148800 0.253300 0.276900 0.354700 1.000000

Show Corelations

vcnCorsData
##             word_freq_make          word_freq_address 
##                 0.24069974                 0.29750940 
##              word_freq_all               word_freq_3d 
##                 0.33283147                 0.09077776 
##              word_freq_our             word_freq_over 
##                 0.40913946                 0.31864550 
##           word_freq_remove         word_freq_internet 
##                 0.51877779                 0.34379623 
##            word_freq_order             word_freq_mail 
##                 0.30073703                 0.29682394 
##          word_freq_receive             word_freq_will 
##                 0.35496682                 0.14847653 
##           word_freq_people           word_freq_report 
##                 0.21287588                 0.14977533 
##        word_freq_addresses             word_freq_free 
##                 0.26515743                 0.50416922 
##         word_freq_business            word_freq_email 
##                 0.35290749                 0.29909391 
##              word_freq_you           word_freq_credit 
##                 0.36110406                 0.32418657 
##             word_freq_your             word_freq_font 
##                 0.50159062                 0.13797471 
##              word_freq_000            word_freq_money 
##                 0.42580256                 0.47215455 
##               word_freq_hp              word_freq_hpl 
##                 0.39981558                 0.34188069 
##           word_freq_george              word_freq_650 
##                 0.35393063                 0.22619064 
##              word_freq_lab             word_freq_labs 
##                 0.22068802                 0.24580530 
##           word_freq_telnet              word_freq_857 
##                 0.20467400                 0.16983798 
##             word_freq_data              word_freq_415 
##                 0.15756347                 0.15802818 
##               word_freq_85       word_freq_technology 
##                 0.21413087                 0.16680254 
##             word_freq_1999            word_freq_parts 
##                 0.26070752                 0.00252536 
##               word_freq_pm           word_freq_direct 
##                 0.14721389                 0.02813193 
##               word_freq_cs          word_freq_meeting 
##                 0.14453750                 0.19574176 
##         word_freq_original          word_freq_project 
##                 0.10781412                 0.14453744 
##               word_freq_re              word_freq_edu 
##                 0.07176763                 0.19702549 
##            word_freq_table       word_freq_conference 
##                 0.02266674                 0.13903044 
##                char_freq_.              char_freq_..1 
##                 0.05683530                 0.03263555 
##              char_freq_..2              char_freq_..3 
##                 0.11122690                 0.59785363 
##              char_freq_..4              char_freq_..5 
##                 0.56563314                 0.26668614 
## capital_run_length_average capital_run_length_longest 
##                 0.48794983                 0.51515693 
##   capital_run_length_total                     status 
##                 0.44397367                 1.00000000

Plot Corelations

corrgram(dfrDataset)

High Corelations

vcnCorsData[vcnCorsData>0.6]
## status 
##      1

Count of spam & nospam values

dfrDataset$status <- as.factor(dfrDataset$status)
table(dfrDataset$status)
## 
##    0    1 
## 2788 1813

Dataset Split

set.seed(707)
vctTrnRecs <- createDataPartition(y=dfrDataset$status, p=0.8, list=FALSE)
dfrTrnData <- dfrDataset[vctTrnRecs,]
dfrTstData <- dfrDataset[-vctTrnRecs,]

Training Dataset RowCount & ColCount

dim(dfrTrnData)
## [1] 3682   58

Testing Dataset RowCount & ColCount

dim(dfrTstData)
## [1] 919  58

Training Dataset Head

head(dfrTrnData)
##   word_freq_make word_freq_address word_freq_all word_freq_3d
## 1           0.00              0.64          0.64            0
## 2           0.21              0.28          0.50            0
## 6           0.00              0.00          0.00            0
## 7           0.00              0.00          0.00            0
## 8           0.00              0.00          0.00            0
## 9           0.15              0.00          0.46            0
##   word_freq_our word_freq_over word_freq_remove word_freq_internet
## 1          0.32           0.00             0.00               0.00
## 2          0.14           0.28             0.21               0.07
## 6          1.85           0.00             0.00               1.85
## 7          1.92           0.00             0.00               0.00
## 8          1.88           0.00             0.00               1.88
## 9          0.61           0.00             0.30               0.00
##   word_freq_order word_freq_mail word_freq_receive word_freq_will
## 1            0.00           0.00              0.00           0.64
## 2            0.00           0.94              0.21           0.79
## 6            0.00           0.00              0.00           0.00
## 7            0.00           0.64              0.96           1.28
## 8            0.00           0.00              0.00           0.00
## 9            0.92           0.76              0.76           0.92
##   word_freq_people word_freq_report word_freq_addresses word_freq_free
## 1             0.00             0.00                0.00           0.32
## 2             0.65             0.21                0.14           0.14
## 6             0.00             0.00                0.00           0.00
## 7             0.00             0.00                0.00           0.96
## 8             0.00             0.00                0.00           0.00
## 9             0.00             0.00                0.00           0.00
##   word_freq_business word_freq_email word_freq_you word_freq_credit
## 1               0.00            1.29          1.93             0.00
## 2               0.07            0.28          3.47             0.00
## 6               0.00            0.00          0.00             0.00
## 7               0.00            0.32          3.85             0.00
## 8               0.00            0.00          0.00             0.00
## 9               0.00            0.15          1.23             3.53
##   word_freq_your word_freq_font word_freq_000 word_freq_money word_freq_hp
## 1           0.96              0          0.00            0.00            0
## 2           1.59              0          0.43            0.43            0
## 6           0.00              0          0.00            0.00            0
## 7           0.64              0          0.00            0.00            0
## 8           0.00              0          0.00            0.00            0
## 9           2.00              0          0.00            0.15            0
##   word_freq_hpl word_freq_george word_freq_650 word_freq_lab
## 1             0                0             0             0
## 2             0                0             0             0
## 6             0                0             0             0
## 7             0                0             0             0
## 8             0                0             0             0
## 9             0                0             0             0
##   word_freq_labs word_freq_telnet word_freq_857 word_freq_data
## 1              0                0             0           0.00
## 2              0                0             0           0.00
## 6              0                0             0           0.00
## 7              0                0             0           0.00
## 8              0                0             0           0.00
## 9              0                0             0           0.15
##   word_freq_415 word_freq_85 word_freq_technology word_freq_1999
## 1             0            0                    0           0.00
## 2             0            0                    0           0.07
## 6             0            0                    0           0.00
## 7             0            0                    0           0.00
## 8             0            0                    0           0.00
## 9             0            0                    0           0.00
##   word_freq_parts word_freq_pm word_freq_direct word_freq_cs
## 1               0            0                0            0
## 2               0            0                0            0
## 6               0            0                0            0
## 7               0            0                0            0
## 8               0            0                0            0
## 9               0            0                0            0
##   word_freq_meeting word_freq_original word_freq_project word_freq_re
## 1                 0                0.0                 0            0
## 2                 0                0.0                 0            0
## 6                 0                0.0                 0            0
## 7                 0                0.0                 0            0
## 8                 0                0.0                 0            0
## 9                 0                0.3                 0            0
##   word_freq_edu word_freq_table word_freq_conference char_freq_.
## 1             0               0                    0           0
## 2             0               0                    0           0
## 6             0               0                    0           0
## 7             0               0                    0           0
## 8             0               0                    0           0
## 9             0               0                    0           0
##   char_freq_..1 char_freq_..2 char_freq_..3 char_freq_..4 char_freq_..5
## 1         0.000             0         0.778         0.000         0.000
## 2         0.132             0         0.372         0.180         0.048
## 6         0.223             0         0.000         0.000         0.000
## 7         0.054             0         0.164         0.054         0.000
## 8         0.206             0         0.000         0.000         0.000
## 9         0.271             0         0.181         0.203         0.022
##   capital_run_length_average capital_run_length_longest
## 1                      3.756                         61
## 2                      5.114                        101
## 6                      3.000                         15
## 7                      1.671                          4
## 8                      2.450                         11
## 9                      9.744                        445
##   capital_run_length_total status
## 1                      278      1
## 2                     1028      1
## 6                       54      1
## 7                      112      1
## 8                       49      1
## 9                     1257      1

Testing Dataset Head

head(dfrTstData)
##    word_freq_make word_freq_address word_freq_all word_freq_3d
## 3            0.06              0.00          0.71            0
## 4            0.00              0.00          0.00            0
## 5            0.00              0.00          0.00            0
## 13           0.00              0.69          0.34            0
## 14           0.00              0.00          0.00            0
## 23           0.00              0.00          0.00            0
##    word_freq_our word_freq_over word_freq_remove word_freq_internet
## 3           1.23           0.19             0.19               0.12
## 4           0.63           0.00             0.31               0.63
## 5           0.63           0.00             0.31               0.63
## 13          0.34           0.00             0.00               0.00
## 14          0.90           0.00             0.90               0.00
## 23          2.94           0.00             0.00               0.00
##    word_freq_order word_freq_mail word_freq_receive word_freq_will
## 3             0.64           0.25              0.38           0.45
## 4             0.31           0.63              0.31           0.31
## 5             0.31           0.63              0.31           0.31
## 13            0.00           0.00              0.00           0.69
## 14            0.00           0.90              0.90           0.00
## 23            0.00           0.00              0.00           0.00
##    word_freq_people word_freq_report word_freq_addresses word_freq_free
## 3              0.12                0                1.75           0.06
## 4              0.31                0                0.00           0.31
## 5              0.31                0                0.00           0.31
## 13             0.00                0                0.00           0.34
## 14             0.90                0                0.00           0.00
## 23             0.00                0                0.00           2.94
##    word_freq_business word_freq_email word_freq_you word_freq_credit
## 3                0.06            1.03          1.36             0.32
## 4                0.00            0.00          3.18             0.00
## 5                0.00            0.00          3.18             0.00
## 13               0.00            1.39          2.09             0.00
## 14               0.00            0.00          2.72             0.00
## 23               0.00            0.00          0.00             0.00
##    word_freq_your word_freq_font word_freq_000 word_freq_money
## 3            0.51              0          1.16            0.06
## 4            0.31              0          0.00            0.00
## 5            0.31              0          0.00            0.00
## 13           1.04              0          0.00            0.00
## 14           0.90              0          0.00            0.00
## 23           0.00              0          0.00            0.00
##    word_freq_hp word_freq_hpl word_freq_george word_freq_650 word_freq_lab
## 3             0             0                0             0             0
## 4             0             0                0             0             0
## 5             0             0                0             0             0
## 13            0             0                0             0             0
## 14            0             0                0             0             0
## 23            0             0                0             0             0
##    word_freq_labs word_freq_telnet word_freq_857 word_freq_data
## 3               0                0             0              0
## 4               0                0             0              0
## 5               0                0             0              0
## 13              0                0             0              0
## 14              0                0             0              0
## 23              0                0             0              0
##    word_freq_415 word_freq_85 word_freq_technology word_freq_1999
## 3              0            0                    0              0
## 4              0            0                    0              0
## 5              0            0                    0              0
## 13             0            0                    0              0
## 14             0            0                    0              0
## 23             0            0                    0              0
##    word_freq_parts word_freq_pm word_freq_direct word_freq_cs
## 3                0            0             0.06            0
## 4                0            0             0.00            0
## 5                0            0             0.00            0
## 13               0            0             0.00            0
## 14               0            0             0.00            0
## 23               0            0             0.00            0
##    word_freq_meeting word_freq_original word_freq_project word_freq_re
## 3                  0               0.12                 0         0.06
## 4                  0               0.00                 0         0.00
## 5                  0               0.00                 0         0.00
## 13                 0               0.00                 0         0.00
## 14                 0               0.00                 0         0.00
## 23                 0               0.00                 0         0.00
##    word_freq_edu word_freq_table word_freq_conference char_freq_.
## 3           0.06               0                    0       0.010
## 4           0.00               0                    0       0.000
## 5           0.00               0                    0       0.000
## 13          0.00               0                    0       0.000
## 14          0.00               0                    0       0.000
## 23          0.00               0                    0       0.404
##    char_freq_..1 char_freq_..2 char_freq_..3 char_freq_..4 char_freq_..5
## 3          0.143             0         0.276         0.184          0.01
## 4          0.137             0         0.137         0.000          0.00
## 5          0.135             0         0.135         0.000          0.00
## 13         0.056             0         0.786         0.000          0.00
## 14         0.000             0         0.000         0.000          0.00
## 23         0.404             0         0.809         0.000          0.00
##    capital_run_length_average capital_run_length_longest
## 3                       9.821                        485
## 4                       3.537                         40
## 5                       3.537                         40
## 13                      3.728                         61
## 14                      2.083                          7
## 23                      4.857                         12
##    capital_run_length_total status
## 3                      2259      1
## 4                       191      1
## 5                       191      1
## 13                      261      1
## 14                       25      1
## 23                       34      1

Training Dataset Summary

lapply(dfrTrnData, FUN=summary)
## $word_freq_make
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1068  0.0000  4.3400 
## 
## $word_freq_address
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.2149  0.0000 14.2800 
## 
## $word_freq_all
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.2828  0.4200  5.1000 
## 
## $word_freq_3d
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.00000  0.00000  0.00000  0.06731  0.00000 42.81000 
## 
## $word_freq_our
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.3125  0.3800 10.0000 
## 
## $word_freq_over
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.09717 0.00000 5.88000 
## 
## $word_freq_remove
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1178  0.0000  7.2700 
## 
## $word_freq_internet
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1048  0.0000  6.0600 
## 
## $word_freq_order
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.09014 0.00000 3.33000 
## 
## $word_freq_mail
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   0.000   0.000   0.229   0.140  11.110 
## 
## $word_freq_receive
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.06156 0.00000 2.61000 
## 
## $word_freq_will
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.1200  0.5519  0.8000  9.6700 
## 
## $word_freq_people
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.09498 0.00000 5.55000 
## 
## $word_freq_report
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.00000  0.00000  0.00000  0.06067  0.00000 10.00000 
## 
## $word_freq_addresses
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.04662 0.00000 4.41000 
## 
## $word_freq_free
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.2533  0.1000 20.0000 
## 
## $word_freq_business
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1436  0.0000  7.1400 
## 
## $word_freq_email
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1788  0.0000  6.6600 
## 
## $word_freq_you
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   0.000   1.300   1.671   2.650  18.750 
## 
## $word_freq_credit
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.00000  0.00000  0.00000  0.08922  0.00000 18.18000 
## 
## $word_freq_your
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.1900  0.8071  1.2800 10.7100 
## 
## $word_freq_font
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1231  0.0000 17.1000 
## 
## $word_freq_000
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1018  0.0000  5.4500 
## 
## $word_freq_money
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.00000  0.00000  0.00000  0.09628  0.00000 12.50000 
## 
## $word_freq_hp
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.5557  0.0000 20.8300 
## 
## $word_freq_hpl
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.2683  0.0000 16.6600 
## 
## $word_freq_george
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.7617  0.0000 33.3300 
## 
## $word_freq_650
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1215  0.0000  5.8800 
## 
## $word_freq_lab
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1063  0.0000 14.2800 
## 
## $word_freq_labs
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1066  0.0000  5.8800 
## 
## $word_freq_telnet
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.06621 0.00000 4.76000 
## 
## $word_freq_857
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.0508  0.0000  4.7600 
## 
## $word_freq_data
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.00000  0.00000  0.00000  0.09997  0.00000 18.18000 
## 
## $word_freq_415
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.05179 0.00000 4.76000 
## 
## $word_freq_85
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1079  0.0000 20.0000 
## 
## $word_freq_technology
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1011  0.0000  7.6900 
## 
## $word_freq_1999
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   0.000   0.000   0.136   0.000   6.890 
## 
## $word_freq_parts
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.01449 0.00000 8.33000 
## 
## $word_freq_pm
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.07446 0.00000 9.75000 
## 
## $word_freq_direct
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.06766 0.00000 4.76000 
## 
## $word_freq_cs
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.04687 0.00000 7.14000 
## 
## $word_freq_meeting
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   0.000   0.000   0.144   0.000  14.280 
## 
## $word_freq_original
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.04646 0.00000 3.57000 
## 
## $word_freq_project
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.0761  0.0000 20.0000 
## 
## $word_freq_re
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.2919  0.1000 20.0000 
## 
## $word_freq_edu
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1773  0.0000 16.7000 
## 
## $word_freq_table
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## 0.000000 0.000000 0.000000 0.005185 0.000000 2.120000 
## 
## $word_freq_conference
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.0332  0.0000  8.3300 
## 
## $char_freq_.
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.04055 0.00000 4.38500 
## 
## $char_freq_..1
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0640  0.1375  0.1887  5.2770 
## 
## $char_freq_..2
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.01619 0.00000 2.77700 
## 
## $char_freq_..3
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.2719  0.3290 32.4800 
## 
## $char_freq_..4
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.07571 0.05300 6.00300 
## 
## $char_freq_..5
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.00000  0.00000  0.00000  0.04609  0.00000 19.83000 
## 
## $capital_run_length_average
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##    1.000    1.600    2.272    5.138    3.707 1102.000 
## 
## $capital_run_length_longest
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    1.00    6.00   14.50   50.16   43.00 2204.00 
## 
## $capital_run_length_total
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##     1.00    34.25    95.00   285.10   269.50 15840.00 
## 
## $status
##    0    1 
## 2231 1451

Testing Dataset Summary

lapply(dfrTstData, FUN=summary)
## $word_freq_make
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.09565 0.00000 4.54000 
## 
## $word_freq_address
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.2056  0.0000 14.2800 
## 
## $word_freq_all
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.2722  0.4050  4.5400 
## 
## $word_freq_3d
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.00000  0.00000  0.00000  0.05789  0.00000 42.73000 
## 
## $word_freq_our
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.3111  0.4100  7.6900 
## 
## $word_freq_over
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.09081 0.00000 1.86000 
## 
## $word_freq_remove
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.09997 0.00000 7.27000 
## 
## $word_freq_internet
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1075  0.0000 11.1100 
## 
## $word_freq_order
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.08978 0.00000 5.26000 
## 
## $word_freq_mail
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   0.000   0.000   0.281   0.220  18.180 
## 
## $word_freq_receive
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.05285 0.00000 2.00000 
## 
## $word_freq_will
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   0.000   0.000   0.501   0.780   5.000 
## 
## $word_freq_people
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.08971 0.00000 2.63000 
## 
## $word_freq_report
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.05045 0.00000 2.32000 
## 
## $word_freq_addresses
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.05955 0.00000 2.38000 
## 
## $word_freq_free
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.2309  0.1250  6.4500 
## 
## $word_freq_business
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1386  0.0000  4.8700 
## 
## $word_freq_email
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.2084  0.0000  9.0900 
## 
## $word_freq_you
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   0.000   1.310   1.628   2.590  10.630 
## 
## $word_freq_credit
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.07098 0.00000 5.19000 
## 
## $word_freq_your
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.3100  0.8203  1.2500 11.1100 
## 
## $word_freq_font
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1135  0.0000 15.4300 
## 
## $word_freq_000
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1012  0.0000  3.3800 
## 
## $word_freq_money
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.08619 0.00000 9.09000 
## 
## $word_freq_hp
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.5247  0.0000 16.6600 
## 
## $word_freq_hpl
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.2536  0.0000  8.0000 
## 
## $word_freq_george
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.7897  0.0000 33.3300 
## 
## $word_freq_650
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1383  0.0000  9.0900 
## 
## $word_freq_lab
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.06946 0.00000 9.09000 
## 
## $word_freq_labs
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.08775 0.00000 4.34000 
## 
## $word_freq_telnet
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.00000  0.00000  0.00000  0.05892  0.00000 12.50000 
## 
## $word_freq_857
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   0.000   0.000   0.032   0.000   4.700 
## 
## $word_freq_data
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.08626 0.00000 4.76000 
## 
## $word_freq_415
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   0.000   0.000   0.032   0.000   4.700 
## 
## $word_freq_85
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.09528 0.00000 4.65000 
## 
## $word_freq_technology
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.08283 0.00000 4.16000 
## 
## $word_freq_1999
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1408  0.0000  4.5400 
## 
## $word_freq_parts
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## 0.000000 0.000000 0.000000 0.008041 0.000000 4.000000 
## 
## $word_freq_pm
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.00000  0.00000  0.00000  0.09532  0.00000 11.11000 
## 
## $word_freq_direct
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.05349 0.00000 4.16000 
## 
## $word_freq_cs
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.03082 0.00000 7.14000 
## 
## $word_freq_meeting
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.08565 0.00000 9.09000 
## 
## $word_freq_original
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.04465 0.00000 1.75000 
## 
## $word_freq_project
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.00000  0.00000  0.00000  0.09159  0.00000 16.66000 
## 
## $word_freq_re
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.3385  0.1350 21.4200 
## 
## $word_freq_edu
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1898  0.0000 22.0500 
## 
## $word_freq_table
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## 0.000000 0.000000 0.000000 0.006485 0.000000 2.170000 
## 
## $word_freq_conference
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.00000  0.00000  0.00000  0.02653  0.00000 10.00000 
## 
## $char_freq_.
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.03068 0.00000 3.83800 
## 
## $char_freq_..1
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0670  0.1450  0.1845  9.7520 
## 
## $char_freq_..2
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.02011 0.00000 4.08100 
## 
## $char_freq_..3
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.2579  0.2660 19.1300 
## 
## $char_freq_..4
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.07621 0.04650 3.30500 
## 
## $char_freq_..5
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.0368  0.0000  7.4070 
## 
## $capital_run_length_average
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##    1.000    1.558    2.309    5.406    3.704 1022.000 
## 
## $capital_run_length_longest
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    1.00    6.50   15.00   60.22   41.50 9989.00 
## 
## $capital_run_length_total
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     1.0    37.0    94.0   275.9   260.0 10060.0 
## 
## $status
##   0   1 
## 557 362

Random Forest Approach

Default Method

myCtrl <- trainControl(method=“cv”, number=10, repeats=3) m1 <- train(predictor~., data=dataFrame, method=“rf”,
verbose=F, trControl=myCtrl) ## Boost Method cvCtrl <- trainControl(method=“repeatedcv”, number=10, repeats=3) m2 <- train(predictor~., data=dataFrame, method=“gmb”, verbose=F, trControl=cvCtrl) ## Custom Algorithm … notice method is not mentioned here myCtrl <- trainControl(method=“oob”, number=10, repeats=3) m3 <- train(predictor~., data=dataFrame, tuneGrid=data.frame(mtry=10), trControl=myCtrl)

We could also try one of these if required ## Support Vector Machines Model myCtrl <- trainControl(method=“cv”, number=10, repeats=3) o1 <- train(predictor~., data=dataFrame, method=“svm”, verbose=F, trControl=cvCtrl) ## KNN Model myCtrl <- trainControl(method=“cv”, number=10, repeats=3) o2 <- train(predictor~., data=dataFrame, method=“knn”, verbose=F, trControl=cvCtrl) ## Bagged Model myCtrl <- trainControl(method=“cv”, number=10, repeats=3) o3 <- train(predictor~., data=dataFrame, method=“bag”, verbose=F, trControl=cvCtrl)

Create Model - Random Forest (Default)

## set seed
set.seed(707)
# mtry
myMtry=sqrt(ncol(dfrTrnData)-1)
myNtrees=500
# start time
vctProcStrt <- proc.time()
# random forest (default)
mdlRndForDef <- randomForest(status~., data=dfrTrnData, 
                             mtry=myMtry, ntree=myNtrees)
# end time
vctProcEnds <- proc.time()
# print
print(paste("Model Created ...",vctProcEnds[1] - vctProcStrt[1]))
## [1] "Model Created ... 10.96"

View Model - Default Random Forest

mdlRndForDef
## 
## Call:
##  randomForest(formula = status ~ ., data = dfrTrnData, mtry = myMtry,      ntree = myNtrees) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 8
## 
##         OOB estimate of  error rate: 4.89%
## Confusion matrix:
##      0    1 class.error
## 0 2161   70  0.03137606
## 1  110 1341  0.07580979

View Model Summary - Default Random Forest

summary(mdlRndForDef)
##                 Length Class  Mode     
## call               5   -none- call     
## type               1   -none- character
## predicted       3682   factor numeric  
## err.rate        1500   -none- numeric  
## confusion          6   -none- numeric  
## votes           7364   matrix numeric  
## oob.times       3682   -none- numeric  
## classes            2   -none- character
## importance        57   -none- numeric  
## importanceSD       0   -none- NULL     
## localImportance    0   -none- NULL     
## proximity          0   -none- NULL     
## ntree              1   -none- numeric  
## mtry               1   -none- numeric  
## forest            14   -none- list     
## y               3682   factor numeric  
## test               0   -none- NULL     
## inbag              0   -none- NULL     
## terms              3   terms  call

Prediction - Test Data - Random Forest (Default)

vctRndForDef <- predict(mdlRndForDef, newdata=dfrTstData)
cmxRndForDef  <- confusionMatrix(vctRndForDef, dfrTstData$status)
cmxRndForDef
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 537  31
##          1  20 331
##                                           
##                Accuracy : 0.9445          
##                  95% CI : (0.9277, 0.9584)
##     No Information Rate : 0.6061          
##     P-Value [Acc > NIR] : <2e-16          
##                                           
##                   Kappa : 0.8832          
##  Mcnemar's Test P-Value : 0.1614          
##                                           
##             Sensitivity : 0.9641          
##             Specificity : 0.9144          
##          Pos Pred Value : 0.9454          
##          Neg Pred Value : 0.9430          
##              Prevalence : 0.6061          
##          Detection Rate : 0.5843          
##    Detection Prevalence : 0.6181          
##       Balanced Accuracy : 0.9392          
##                                           
##        'Positive' Class : 0               
## 

Create Model - Random Forest (RFM)

## set seed
set.seed(707)
# start time
vctProcStrt <- proc.time()
# random forest (default)
myControl <- trainControl(method="cv", number=10, repeats=3)
myMetric <- "Accuracy"
myMtry <- sqrt(ncol(dfrTrnData)-1)
#myNtrees <- 500
myTuneGrid <-  expand.grid(.mtry=myMtry)
mdlRndForRfm <- train(status~., data=dfrTrnData, method="rf",
                        verbose=F, metric=myMetric, trControl=myControl,
                        tuneGrid=myTuneGrid)
# end time
vctProcEnds <- proc.time()
# print
print(paste("Model Created ...",vctProcEnds[1] - vctProcStrt[1]))
## [1] "Model Created ... 102.56"

View Model - Random Forest (RFM)

mdlRndForRfm
## Random Forest 
## 
## 3682 samples
##   57 predictor
##    2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 3313, 3314, 3314, 3314, 3314, 3314, ... 
## Resampling results:
## 
##   Accuracy   Kappa    
##   0.9513837  0.8976903
## 
## Tuning parameter 'mtry' was held constant at a value of 7.549834

View Model Summary - Random Forest (RFM)

summary(mdlRndForRfm)
##                 Length Class      Mode     
## call               5   -none-     call     
## type               1   -none-     character
## predicted       3682   factor     numeric  
## err.rate        1500   -none-     numeric  
## confusion          6   -none-     numeric  
## votes           7364   matrix     numeric  
## oob.times       3682   -none-     numeric  
## classes            2   -none-     character
## importance        57   -none-     numeric  
## importanceSD       0   -none-     NULL     
## localImportance    0   -none-     NULL     
## proximity          0   -none-     NULL     
## ntree              1   -none-     numeric  
## mtry               1   -none-     numeric  
## forest            14   -none-     list     
## y               3682   factor     numeric  
## test               0   -none-     NULL     
## inbag              0   -none-     NULL     
## xNames            57   -none-     character
## problemType        1   -none-     character
## tuneValue          1   data.frame list     
## obsLevels          2   -none-     character
## param              1   -none-     list

Prediction - Test Data - Random Forest (RFM)

vctRndForRfm <- predict(mdlRndForRfm, newdata=dfrTstData)
cmxRndForRfm  <- confusionMatrix(vctRndForRfm, dfrTstData$status)
cmxRndForRfm
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 537  30
##          1  20 332
##                                           
##                Accuracy : 0.9456          
##                  95% CI : (0.9289, 0.9594)
##     No Information Rate : 0.6061          
##     P-Value [Acc > NIR] : <2e-16          
##                                           
##                   Kappa : 0.8855          
##  Mcnemar's Test P-Value : 0.2031          
##                                           
##             Sensitivity : 0.9641          
##             Specificity : 0.9171          
##          Pos Pred Value : 0.9471          
##          Neg Pred Value : 0.9432          
##              Prevalence : 0.6061          
##          Detection Rate : 0.5843          
##    Detection Prevalence : 0.6170          
##       Balanced Accuracy : 0.9406          
##                                           
##        'Positive' Class : 0               
## 

Create Model - Random Forest (GBM)

## set seed
set.seed(707)
# start time
vctProcStrt <- proc.time()
# random forest (default)
myControl <- trainControl(method="repeatedcv", number=10, repeats=3)
myMetric <- "Accuracy"
myMtry <- sqrt(ncol(dfrTrnData)-1)
#myNtrees <- 500
myTuneGrid <- expand.grid(.mtry=myMtry)
mdlRndForGbm <- train(status~., data=dfrTrnData, method="gbm",
                 verbose=F, metric=myMetric, trControl=myControl)
#                        tuneGrid=myTuneGrid, ntree=myNtrees)
# end time
vctProcEnds <- proc.time()
# print
print(paste("Model Created ...",vctProcEnds[1] - vctProcStrt[1]))
## [1] "Model Created ... 107.22"

View Model - Random Forest (GBM)

mdlRndForGbm
## Stochastic Gradient Boosting 
## 
## 3682 samples
##   57 predictor
##    2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 3 times) 
## Summary of sample sizes: 3313, 3314, 3314, 3314, 3314, 3314, ... 
## Resampling results across tuning parameters:
## 
##   interaction.depth  n.trees  Accuracy   Kappa    
##   1                   50      0.9166200  0.8217745
##   1                  100      0.9317404  0.8553362
##   1                  150      0.9391638  0.8713401
##   2                   50      0.9316474  0.8552624
##   2                  100      0.9409724  0.8753850
##   2                  150      0.9464058  0.8869276
##   3                   50      0.9370819  0.8670327
##   3                  100      0.9442331  0.8823408
##   3                  150      0.9472207  0.8888336
## 
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
## 
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## Accuracy was used to select the optimal model using  the largest value.
## The final values used for the model were n.trees = 150,
##  interaction.depth = 3, shrinkage = 0.1 and n.minobsinnode = 10.

View Model Summary - Random Forest (GBM)

summary(mdlRndForGbm)

##                                                   var      rel.inf
## char_freq_..3                           char_freq_..3 25.521437639
## char_freq_..4                           char_freq_..4 17.578240290
## word_freq_remove                     word_freq_remove 11.766301810
## word_freq_free                         word_freq_free  9.679062803
## capital_run_length_average capital_run_length_average  6.055904109
## word_freq_hp                             word_freq_hp  5.270472464
## word_freq_your                         word_freq_your  4.505565972
## capital_run_length_longest capital_run_length_longest  3.193041450
## capital_run_length_total     capital_run_length_total  2.851656742
## word_freq_money                       word_freq_money  2.843308894
## word_freq_george                     word_freq_george  1.935274601
## word_freq_edu                           word_freq_edu  1.922367776
## word_freq_our                           word_freq_our  1.152916067
## word_freq_internet                 word_freq_internet  0.637329734
## word_freq_you                           word_freq_you  0.624814549
## word_freq_1999                         word_freq_1999  0.486145458
## word_freq_re                             word_freq_re  0.465441449
## word_freq_650                           word_freq_650  0.465321156
## word_freq_meeting                   word_freq_meeting  0.453443503
## word_freq_will                         word_freq_will  0.311550314
## word_freq_000                           word_freq_000  0.228422002
## word_freq_over                         word_freq_over  0.220407506
## word_freq_business                 word_freq_business  0.219532854
## char_freq_.                               char_freq_.  0.198633300
## char_freq_..1                           char_freq_..1  0.198119641
## word_freq_hpl                           word_freq_hpl  0.193733490
## word_freq_receive                   word_freq_receive  0.168121158
## word_freq_email                       word_freq_email  0.163393833
## word_freq_technology             word_freq_technology  0.120982669
## word_freq_make                         word_freq_make  0.080538250
## word_freq_3d                             word_freq_3d  0.074419321
## word_freq_credit                     word_freq_credit  0.072294158
## word_freq_project                   word_freq_project  0.061061928
## word_freq_order                       word_freq_order  0.056973556
## word_freq_mail                         word_freq_mail  0.044588232
## word_freq_font                         word_freq_font  0.038618287
## char_freq_..5                           char_freq_..5  0.032986403
## word_freq_report                     word_freq_report  0.021522766
## word_freq_all                           word_freq_all  0.020236487
## word_freq_parts                       word_freq_parts  0.019842847
## word_freq_data                         word_freq_data  0.012981264
## word_freq_address                   word_freq_address  0.012545248
## word_freq_pm                             word_freq_pm  0.010697917
## word_freq_people                     word_freq_people  0.009750106
## word_freq_addresses               word_freq_addresses  0.000000000
## word_freq_lab                           word_freq_lab  0.000000000
## word_freq_labs                         word_freq_labs  0.000000000
## word_freq_telnet                     word_freq_telnet  0.000000000
## word_freq_857                           word_freq_857  0.000000000
## word_freq_415                           word_freq_415  0.000000000
## word_freq_85                             word_freq_85  0.000000000
## word_freq_direct                     word_freq_direct  0.000000000
## word_freq_cs                             word_freq_cs  0.000000000
## word_freq_original                 word_freq_original  0.000000000
## word_freq_table                       word_freq_table  0.000000000
## word_freq_conference             word_freq_conference  0.000000000
## char_freq_..2                           char_freq_..2  0.000000000

Prediction - Test Data - Random Forest (GBM)

vctRndForGbm <- predict(mdlRndForGbm, newdata=dfrTstData)
cmxRndForGbm  <- confusionMatrix(vctRndForGbm, dfrTstData$status)
cmxRndForGbm
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 536  33
##          1  21 329
##                                          
##                Accuracy : 0.9412         
##                  95% CI : (0.924, 0.9556)
##     No Information Rate : 0.6061         
##     P-Value [Acc > NIR] : <2e-16         
##                                          
##                   Kappa : 0.8762         
##  Mcnemar's Test P-Value : 0.1344         
##                                          
##             Sensitivity : 0.9623         
##             Specificity : 0.9088         
##          Pos Pred Value : 0.9420         
##          Neg Pred Value : 0.9400         
##              Prevalence : 0.6061         
##          Detection Rate : 0.5832         
##    Detection Prevalence : 0.6192         
##       Balanced Accuracy : 0.9356         
##                                          
##        'Positive' Class : 0              
## 

Create Model - Random Forest (OOB)

## set seed
set.seed(707)
# start time
vctProcStrt <- proc.time()
# random forest (default)
myControl <- trainControl(method="oob", number=10, repeats=3)
myMetric <- "Accuracy"
myMtry <- sqrt(ncol(dfrTrnData)-1)
myNtrees <- 500
myTuneGrid <- expand.grid(.mtry=myMtry)
mdlRndForOob <- train(status~., data=dfrTrnData, 
                    verbose=F, metric=myMetric, trControl=myControl, 
                    tuneGrid=myTuneGrid, ntree=myNtrees)
# end time
vctProcEnds <- proc.time()
# print
print(paste("Model Created ...",vctProcEnds[1] - vctProcStrt[1]))
## [1] "Model Created ... 21.31"

View Model - Random Formbest (OOB)

mdlRndForOob
## Random Forest 
## 
## 3682 samples
##   57 predictor
##    2 classes: '0', '1' 
## 
## No pre-processing
## Resampling results:
## 
##   Accuracy   Kappa    
##   0.9508419  0.8964783
## 
## Tuning parameter 'mtry' was held constant at a value of 7.549834

View Model Summary - Random Forest (OOB)

summary(mdlRndForOob)
##                 Length Class      Mode     
## call               6   -none-     call     
## type               1   -none-     character
## predicted       3682   factor     numeric  
## err.rate        1500   -none-     numeric  
## confusion          6   -none-     numeric  
## votes           7364   matrix     numeric  
## oob.times       3682   -none-     numeric  
## classes            2   -none-     character
## importance        57   -none-     numeric  
## importanceSD       0   -none-     NULL     
## localImportance    0   -none-     NULL     
## proximity          0   -none-     NULL     
## ntree              1   -none-     numeric  
## mtry               1   -none-     numeric  
## forest            14   -none-     list     
## y               3682   factor     numeric  
## test               0   -none-     NULL     
## inbag              0   -none-     NULL     
## xNames            57   -none-     character
## problemType        1   -none-     character
## tuneValue          1   data.frame list     
## obsLevels          2   -none-     character
## param              2   -none-     list

Prediction - Test Data - Random Forest (OOB)

vctRndForOob <- predict(mdlRndForOob, newdata=dfrTstData)
cmxRndForOob <- confusionMatrix(vctRndForOob, dfrTstData$status)
cmxRndForOob
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 536  31
##          1  21 331
##                                           
##                Accuracy : 0.9434          
##                  95% CI : (0.9265, 0.9575)
##     No Information Rate : 0.6061          
##     P-Value [Acc > NIR] : <2e-16          
##                                           
##                   Kappa : 0.8809          
##  Mcnemar's Test P-Value : 0.212           
##                                           
##             Sensitivity : 0.9623          
##             Specificity : 0.9144          
##          Pos Pred Value : 0.9453          
##          Neg Pred Value : 0.9403          
##              Prevalence : 0.6061          
##          Detection Rate : 0.5832          
##    Detection Prevalence : 0.6170          
##       Balanced Accuracy : 0.9383          
##                                           
##        'Positive' Class : 0               
##