1. Anscombes quartet is a set of 4 \(x,y\) data sets that were published by Francis Anscombe in a 1973 paper Graphs in statistical analysis. For this first question load the anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.
data <- anscombe
  1. Summarise the data by calculating the mean, variance, for each column and the correlation between each pair (eg. x1 and y1, x2 and y2, etc) (Hint: use the fBasics() package!)
library(fBasics)
## Loading required package: timeDate
## Loading required package: timeSeries
## 
## Rmetrics Package fBasics
## Analysing Markets and calculating Basic Statistics
## Copyright (C) 2005-2014 Rmetrics Association Zurich
## Educational Software for Financial Engineering and Computational Science
## Rmetrics is free software and comes with ABSOLUTELY NO WARRANTY.
## https://www.rmetrics.org --- Mail to: info@rmetrics.org
basicStats(data)
##                    x1        x2        x3        x4        y1        y2
## nobs        11.000000 11.000000 11.000000 11.000000 11.000000 11.000000
## NAs          0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
## Minimum      4.000000  4.000000  4.000000  8.000000  4.260000  3.100000
## Maximum     14.000000 14.000000 14.000000 19.000000 10.840000  9.260000
## 1. Quartile  6.500000  6.500000  6.500000  8.000000  6.315000  6.695000
## 3. Quartile 11.500000 11.500000 11.500000  8.000000  8.570000  8.950000
## Mean         9.000000  9.000000  9.000000  9.000000  7.500909  7.500909
## Median       9.000000  9.000000  9.000000  8.000000  7.580000  8.140000
## Sum         99.000000 99.000000 99.000000 99.000000 82.510000 82.510000
## SE Mean      1.000000  1.000000  1.000000  1.000000  0.612541  0.612568
## LCL Mean     6.771861  6.771861  6.771861  6.771861  6.136083  6.136024
## UCL Mean    11.228139 11.228139 11.228139 11.228139  8.865735  8.865795
## Variance    11.000000 11.000000 11.000000 11.000000  4.127269  4.127629
## Stdev        3.316625  3.316625  3.316625  3.316625  2.031568  2.031657
## Skewness     0.000000  0.000000  0.000000  2.466911 -0.048374 -0.978693
## Kurtosis    -1.528926 -1.528926 -1.528926  4.520661 -1.199123 -0.514319
##                    y3        y4
## nobs        11.000000 11.000000
## NAs          0.000000  0.000000
## Minimum      5.390000  5.250000
## Maximum     12.740000 12.500000
## 1. Quartile  6.250000  6.170000
## 3. Quartile  7.980000  8.190000
## Mean         7.500000  7.500909
## Median       7.110000  7.040000
## Sum         82.500000 82.510000
## SE Mean      0.612196  0.612242
## LCL Mean     6.135943  6.136748
## UCL Mean     8.864057  8.865070
## Variance     4.122620  4.123249
## Stdev        2.030424  2.030579
## Skewness     1.380120  1.120774
## Kurtosis     1.240044  0.628751
correlationTest(data$x1, data$y1)
## 
## Title:
##  Pearson's Correlation Test
## 
## Test Results:
##   PARAMETER:
##     Degrees of Freedom: 9
##   SAMPLE ESTIMATES:
##     Correlation: 0.8164
##   STATISTIC:
##     t: 4.2415
##   P VALUE:
##     Alternative Two-Sided: 0.00217 
##     Alternative      Less: 0.9989 
##     Alternative   Greater: 0.001085 
##   CONFIDENCE INTERVAL:
##     Two-Sided: 0.4244, 0.9507
##          Less: -1, 0.9388
##       Greater: 0.5113, 1
## 
## Description:
##  Tue Sep 12 11:57:24 2017
correlationTest(data$x2, data$y2)
## 
## Title:
##  Pearson's Correlation Test
## 
## Test Results:
##   PARAMETER:
##     Degrees of Freedom: 9
##   SAMPLE ESTIMATES:
##     Correlation: 0.8162
##   STATISTIC:
##     t: 4.2386
##   P VALUE:
##     Alternative Two-Sided: 0.002179 
##     Alternative      Less: 0.9989 
##     Alternative   Greater: 0.001089 
##   CONFIDENCE INTERVAL:
##     Two-Sided: 0.4239, 0.9506
##          Less: -1, 0.9387
##       Greater: 0.5109, 1
## 
## Description:
##  Tue Sep 12 11:57:24 2017
correlationTest(data$x3, data$y3)
## 
## Title:
##  Pearson's Correlation Test
## 
## Test Results:
##   PARAMETER:
##     Degrees of Freedom: 9
##   SAMPLE ESTIMATES:
##     Correlation: 0.8163
##   STATISTIC:
##     t: 4.2394
##   P VALUE:
##     Alternative Two-Sided: 0.002176 
##     Alternative      Less: 0.9989 
##     Alternative   Greater: 0.001088 
##   CONFIDENCE INTERVAL:
##     Two-Sided: 0.4241, 0.9507
##          Less: -1, 0.9387
##       Greater: 0.511, 1
## 
## Description:
##  Tue Sep 12 11:57:24 2017
correlationTest(data$x4, data$y4)
## 
## Title:
##  Pearson's Correlation Test
## 
## Test Results:
##   PARAMETER:
##     Degrees of Freedom: 9
##   SAMPLE ESTIMATES:
##     Correlation: 0.8165
##   STATISTIC:
##     t: 4.243
##   P VALUE:
##     Alternative Two-Sided: 0.002165 
##     Alternative      Less: 0.9989 
##     Alternative   Greater: 0.001082 
##   CONFIDENCE INTERVAL:
##     Two-Sided: 0.4246, 0.9507
##          Less: -1, 0.9388
##       Greater: 0.5115, 1
## 
## Description:
##  Tue Sep 12 11:57:24 2017
  1. Create scatter plots for each \(x, y\) pair of data.
plot(data$x1, data$y1, main="Scatterplot of x1 and y1",xlab="x1 Values", ylab="y1 Values")

plot(data$x2, data$y2, main="Scatterplot of x2 and y2",xlab="x2 Values", ylab="y2 Values")

plot(data$x3, data$y3, main="Scatterplot of x3 and y3",xlab="x3 Values", ylab="y3 Values")

plot(data$x4, data$y4, main="Scatterplot of x4 and y4",xlab="x4 Values", ylab="y4 Values")

  1. Now change the symbols on the scatter plots to solid circles and plot them together as a 4 panel graphic
par(mfrow=c(2,2))
plot(data$x1, data$y1, main="Scatterplot of x1 and y1",xlab="x1 Values", ylab="y1 Values",pch=19)
plot(data$x2, data$y2, main="Scatterplot of x2 and y2",xlab="x2 Values", ylab="y2 Values",pch=19)
plot(data$x3, data$y3, main="Scatterplot of x3 and y3",xlab="x3 Values", ylab="y3 Values",pch=19)
plot(data$x4, data$y4, main="Scatterplot of x4 and y4",xlab="x4 Values", ylab="y4 Values",pch=19)

  1. Now fit a linear model to each data set using the lm() function.
X1Y1 <- lm(data$y1~data$x1, data=data)
summary(X1Y1)
## 
## Call:
## lm(formula = data$y1 ~ data$x1, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.92127 -0.45577 -0.04136  0.70941  1.83882 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   3.0001     1.1247   2.667  0.02573 * 
## data$x1       0.5001     0.1179   4.241  0.00217 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared:  0.6665, Adjusted R-squared:  0.6295 
## F-statistic: 17.99 on 1 and 9 DF,  p-value: 0.00217
X2Y2 <- lm(data$y2~data$x2, data=data)
summary(X2Y2)
## 
## Call:
## lm(formula = data$y2 ~ data$x2, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.9009 -0.7609  0.1291  0.9491  1.2691 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)    3.001      1.125   2.667  0.02576 * 
## data$x2        0.500      0.118   4.239  0.00218 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared:  0.6662, Adjusted R-squared:  0.6292 
## F-statistic: 17.97 on 1 and 9 DF,  p-value: 0.002179
X3Y3 <- lm(data$y3~data$x3, data=data)
summary(X3Y3)
## 
## Call:
## lm(formula = data$y3 ~ data$x3, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.1586 -0.6146 -0.2303  0.1540  3.2411 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   3.0025     1.1245   2.670  0.02562 * 
## data$x3       0.4997     0.1179   4.239  0.00218 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.236 on 9 degrees of freedom
## Multiple R-squared:  0.6663, Adjusted R-squared:  0.6292 
## F-statistic: 17.97 on 1 and 9 DF,  p-value: 0.002176
X4Y4 <- lm(data$y4~data$x4, data=data)
summary(X4Y4)
## 
## Call:
## lm(formula = data$y4 ~ data$x4, data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.751 -0.831  0.000  0.809  1.839 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   3.0017     1.1239   2.671  0.02559 * 
## data$x4       0.4999     0.1178   4.243  0.00216 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.236 on 9 degrees of freedom
## Multiple R-squared:  0.6667, Adjusted R-squared:  0.6297 
## F-statistic:    18 on 1 and 9 DF,  p-value: 0.002165
  1. Now combine the last two tasks. Create a four panel scatter plot matrix that has both the data points and the regression lines. (hint: the model objects will carry over chunks!)
#For x1 and y1 values
par(mfrow=c(2,2))
plot(data$x1, data$y1, main="Scatterplot of x1 and y1",xlab="x1 Values", ylab="y1 Values",pch=19)
abline(X1Y1)

#For x2 and y2 values
plot(data$x2, data$y2, main="Scatterplot of x2 and y2",xlab="x2 Values", ylab="y2 Values",pch=19)
abline(X2Y2)

#For x3 and y3 values
plot(data$x3, data$y3, main="Scatterplot of x3 and y3",xlab="x3 Values", ylab="y3 Values",pch=19)
abline(X3Y3)

#For x4 and y4 values
plot(data$x4, data$y4, main="Scatterplot of x4 and y4",xlab="x4 Values", ylab="y4 Values",pch=19)
abline(X4Y4)

  1. Now compare the model fits for each model object.
#Model fit for x1,y1
anova(X1Y1)
## Analysis of Variance Table
## 
## Response: data$y1
##           Df Sum Sq Mean Sq F value  Pr(>F)   
## data$x1    1 27.510 27.5100   17.99 0.00217 **
## Residuals  9 13.763  1.5292                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Model fit for x2,y2
anova(X2Y2)
## Analysis of Variance Table
## 
## Response: data$y2
##           Df Sum Sq Mean Sq F value   Pr(>F)   
## data$x2    1 27.500 27.5000  17.966 0.002179 **
## Residuals  9 13.776  1.5307                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Model fit for x3,y3
anova(X3Y3)
## Analysis of Variance Table
## 
## Response: data$y3
##           Df Sum Sq Mean Sq F value   Pr(>F)   
## data$x3    1 27.470 27.4700  17.972 0.002176 **
## Residuals  9 13.756  1.5285                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Model fit for x4,y4
anova(X4Y4)
## Analysis of Variance Table
## 
## Response: data$y4
##           Df Sum Sq Mean Sq F value   Pr(>F)   
## data$x4    1 27.490 27.4900  18.003 0.002165 **
## Residuals  9 13.742  1.5269                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  1. In text, summarize the lesson of Anscombe’s Quartet and what it says about the value of data visualization.

Data visualizations provides a unique perspective of a dataset and helps understand more beyond numerical relationships.

Anscombe’s Quartet consists of four datasets consisting of x and y values. Since they have almost identical statistical values its easier to assume that they have similar properties but when plotted we can see the values and interpretations of each data set is different

Therefore, this helps us realize that although the summary values are almost similar when we create data visualization it helps us identify the differences between data sets.