library(ggplot2) #Required
library(dplyr) #Data wrangling
library(tidyr) #Data wrangling
library(rgeos) #Mapping
library(maptools) #Mapping
library(ggmap) #Mapping
library(broom) #Mapping
library(sqldf) #SQL
vic.lga.shp <- readShapeSpatial("~/Downloads/vmlite_lga_cm/vmlite_lga_cm.shp")
use rgdal::readOGR or sf::st_readuse rgdal::readOGR or sf::st_read
lga_profiles_data_2011_pt1 <- read.csv("~/Downloads//lga_profiles_data_2011_pt1.csv")
lga.shp.f <- tidy(vic.lga.shp, region = "lga_name")
lga.shp.f$lga_name <-lga.shp.f$id
merge.lga.profiles<-merge(lga.shp.f, lga_profiles_data_2011_pt1,
by="lga_name", all.x=TRUE)
choro.data.frame<-merge.lga.profiles[order(merge.lga.profiles$order), ]
p1 <- ggplot(data = choro.data.frame,
aes(x = long, y = lat, group = group,
fill = median_house_price))
p1 + geom_polygon(color = "white", size = 0.25) +
coord_map() +
scale_fill_distiller(name = "Median of House Prices",
guide = "legend",
palette = "YlOrRd", direction = 1) +
theme_nothing(legend = TRUE) +
labs(title="House Prices in Victoria - 2011")

LS0tCnRpdGxlOiAiTWVkaWFuIFByaWNlcyBvZiBIb3VzZXMgaW4gVmljdG9yaWEgLSAyMDExIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKQXV0aG9yOiAiQW1hbCBKb3kiCi0tLQoKYGBge3J9CmxpYnJhcnkoZ2dwbG90MikgI1JlcXVpcmVkCmxpYnJhcnkoZHBseXIpICNEYXRhIHdyYW5nbGluZwpsaWJyYXJ5KHRpZHlyKSAjRGF0YSB3cmFuZ2xpbmcKbGlicmFyeShyZ2VvcykgI01hcHBpbmcKbGlicmFyeShtYXB0b29scykgI01hcHBpbmcKbGlicmFyeShnZ21hcCkgI01hcHBpbmcKbGlicmFyeShicm9vbSkgI01hcHBpbmcKbGlicmFyeShzcWxkZikgI1NRTApgYGAKCmBgYHtyfQp2aWMubGdhLnNocCA8LSByZWFkU2hhcGVTcGF0aWFsKCJ+L0Rvd25sb2Fkcy92bWxpdGVfbGdhX2NtL3ZtbGl0ZV9sZ2FfY20uc2hwIikKYGBgCmBgYHtyfQpsZ2FfcHJvZmlsZXNfZGF0YV8yMDExX3B0MSA8LSByZWFkLmNzdigifi9Eb3dubG9hZHMvL2xnYV9wcm9maWxlc19kYXRhXzIwMTFfcHQxLmNzdiIpCmBgYApgYGB7cn0KbGdhLnNocC5mIDwtIHRpZHkodmljLmxnYS5zaHAsIHJlZ2lvbiA9ICJsZ2FfbmFtZSIpCmxnYS5zaHAuZiRsZ2FfbmFtZSA8LWxnYS5zaHAuZiRpZApgYGAKYGBge3J9Cm1lcmdlLmxnYS5wcm9maWxlczwtbWVyZ2UobGdhLnNocC5mLCBsZ2FfcHJvZmlsZXNfZGF0YV8yMDExX3B0MSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgYnk9ImxnYV9uYW1lIiwgYWxsLng9VFJVRSkKYGBgCmBgYHtyfQpjaG9yby5kYXRhLmZyYW1lPC1tZXJnZS5sZ2EucHJvZmlsZXNbb3JkZXIobWVyZ2UubGdhLnByb2ZpbGVzJG9yZGVyKSwgXSAKCnAxIDwtIGdncGxvdChkYXRhID0gY2hvcm8uZGF0YS5mcmFtZSwKICAgICAgICAgICAgIGFlcyh4ID0gbG9uZywgeSA9IGxhdCwgZ3JvdXAgPSBncm91cCwgCiAgICAgICAgICAgICAgICAgZmlsbCA9IG1lZGlhbl9ob3VzZV9wcmljZSkpCmBgYAoKYGBge3J9CnAxICsgZ2VvbV9wb2x5Z29uKGNvbG9yID0gIndoaXRlIiwgc2l6ZSA9IDAuMjUpICsgCiAgY29vcmRfbWFwKCkgKwogIHNjYWxlX2ZpbGxfZGlzdGlsbGVyKG5hbWUgPSAiTWVkaWFuIG9mIEhvdXNlIFByaWNlcyIsCiAgICAgICAgICAgICAgICAgICAgICAgIGd1aWRlID0gImxlZ2VuZCIsCiAgICAgICAgICAgICAgICAgICAgcGFsZXR0ZSA9ICJZbE9yUmQiLCBkaXJlY3Rpb24gPSAxKSArCiAgdGhlbWVfbm90aGluZyhsZWdlbmQgPSBUUlVFKSArCiAgbGFicyh0aXRsZT0iSG91c2UgUHJpY2VzIGluIFZpY3RvcmlhIC0gMjAxMSIpCmBgYAo=