Load packages

library(tidyverse)
library(broom)
library(mosaic)
library(sjmisc)
library(readr)
library(dplyr)
library(ggplot2)
library(tibble)

Read in CSV file

WorldDevelopment<- read_csv("C:/Users/Papa/Desktop/Soc 712 -R/World_Bank_data.csv", col_names = TRUE)
print(WorldDevelopment)
## # A tibble: 215 x 17
##        FIPS       `Name of Area`    `Qualifying Name` `Individual Country`
##       <chr>                <chr>                <chr>                <chr>
##  1 Geo_FIPS             Geo_NAME            Geo_QNAME       Geo_INDCOUNTRY
##  2      ABW                Aruba                Aruba                  ABW
##  3      AFG          Afghanistan          Afghanistan                  AFG
##  4      AGO               Angola               Angola                  AGO
##  5      ALB              Albania              Albania                  ALB
##  6      AND              Andorra              Andorra                  AND
##  7      ARE United Arab Emirates United Arab Emirates                  ARE
##  8      ARG            Argentina            Argentina                  ARG
##  9      ARM              Armenia              Armenia                  ARM
## 10      ASM       American Samoa       American Samoa                  ASM
## # ... with 205 more rows, and 13 more variables: `Total Population` <chr>,
## #   `Total Population_1` <chr>, `Total Population: Under 14 Years` <chr>,
## #   `Total Population: 15 to 64 Years` <chr>, `Total Population: 65 Years
## #   and Over` <chr>, `Gross Domestic Product (Current US$ in
## #   Millions)` <chr>, `Gross Domestic Product per Capita (Current
## #   US$)` <chr>, `Gross Domestic Product (Annual % Growth)` <chr>, `Gross
## #   Domestic Product per Capita (Annual % Growth)` <chr>, `Ease of Doing
## #   Business Index` <chr>, `Days Required to Register a Business` <chr>,
## #   `Start-Up Procedures to Register a Business` <chr>, `Cost of Business
## #   Start-Up Procedures (% of GNI per Capita)` <chr>

Rename and Select variables

WorldDevelopment2 <- rename(WorldDevelopment, "Country"="Name of Area", "Popul"="Total Population","GDP"="Gross Domestic Product per Capita (Current US$)", "GDP per Capita Growth"="Gross Domestic Product per Capita (Annual % Growth)","Ease of Doing Business"="Ease of Doing Business Index")
WorldDevelopment3 <-select (WorldDevelopment2, "Country", "Popul", "GDP", "GDP per Capita Growth", "Ease of Doing Business")
print(WorldDevelopment3)
## # A tibble: 215 x 5
##                 Country       Popul         GDP `GDP per Capita Growth`
##                   <chr>       <chr>       <chr>                   <chr>
##  1             Geo_NAME SE_T001_001 SE_T029_002             SE_T500_002
##  2                Aruba      103889        <NA>                    <NA>
##  3          Afghanistan    32526562 590.2695154            -1.286167206
##  4               Angola    25021974  4102.11859            -0.272482604
##  5              Albania     2889167 3965.016806             2.719280069
##  6              Andorra       70473        <NA>                    <NA>
##  7 United Arab Emirates     9156963 40438.37636             2.384617746
##  8            Argentina    43416755        <NA>                    <NA>
##  9              Armenia     3017712 3499.804218             2.605504436
## 10       American Samoa       55538        <NA>                    <NA>
## # ... with 205 more rows, and 1 more variables: `Ease of Doing
## #   Business` <chr>
dim(WorldDevelopment3)
## [1] 215   5

Graph

ggplot(data = WorldDevelopment3) + geom_col(aes(x=Country, y= GDP), fill = "green") + labs(x="Country",y="GDP", title="Countries with highest GDP's")