store.df <- read.csv(paste("StoreData.csv", sep=""))
aggregate(store.df$p2sales, by=list(country=store.df$country), sum)
country x
1 AU 9934
2 BR 21362
3 CN 20911
4 DE 52263
5 GB 31264
6 JP 41344
7 US 31248
aggregate(store.df$p1sales, by=list(StoreID = store.df$storeNum), mean)
StoreID x
1 101 130.5385
2 102 134.7404
3 103 136.0385
4 104 131.4423
5 105 129.5288
6 106 133.7981
7 107 133.8077
8 108 133.6923
9 109 131.5481
10 110 132.0962
11 111 130.4519
12 112 129.8846
13 113 137.7692
14 114 132.1923
15 115 129.5288
16 116 135.7500
17 117 135.0385
18 118 139.8462
19 119 133.7308
20 120 129.5481
by(store.df$p1sales, store.df$storeNum, mean)
store.df$storeNum: 101
[1] 130.5385
--------------------------------------------------------
store.df$storeNum: 102
[1] 134.7404
--------------------------------------------------------
store.df$storeNum: 103
[1] 136.0385
--------------------------------------------------------
store.df$storeNum: 104
[1] 131.4423
--------------------------------------------------------
store.df$storeNum: 105
[1] 129.5288
--------------------------------------------------------
store.df$storeNum: 106
[1] 133.7981
--------------------------------------------------------
store.df$storeNum: 107
[1] 133.8077
--------------------------------------------------------
store.df$storeNum: 108
[1] 133.6923
--------------------------------------------------------
store.df$storeNum: 109
[1] 131.5481
--------------------------------------------------------
store.df$storeNum: 110
[1] 132.0962
--------------------------------------------------------
store.df$storeNum: 111
[1] 130.4519
--------------------------------------------------------
store.df$storeNum: 112
[1] 129.8846
--------------------------------------------------------
store.df$storeNum: 113
[1] 137.7692
--------------------------------------------------------
store.df$storeNum: 114
[1] 132.1923
--------------------------------------------------------
store.df$storeNum: 115
[1] 129.5288
--------------------------------------------------------
store.df$storeNum: 116
[1] 135.75
--------------------------------------------------------
store.df$storeNum: 117
[1] 135.0385
--------------------------------------------------------
store.df$storeNum: 118
[1] 139.8462
--------------------------------------------------------
store.df$storeNum: 119
[1] 133.7308
--------------------------------------------------------
store.df$storeNum: 120
[1] 129.5481
by(store.df$p1sales, list(store.df$storeNum, store.df$Year), mean)
: 101
: 1
[1] 127.7885
--------------------------------------------------------
: 102
: 1
[1] 129.7115
--------------------------------------------------------
: 103
: 1
[1] 133.2308
--------------------------------------------------------
: 104
: 1
[1] 128.0769
--------------------------------------------------------
: 105
: 1
[1] 129.7692
--------------------------------------------------------
: 106
: 1
[1] 131.5
--------------------------------------------------------
: 107
: 1
[1] 131.1154
--------------------------------------------------------
: 108
: 1
[1] 134.8077
--------------------------------------------------------
: 109
: 1
[1] 129.8269
--------------------------------------------------------
: 110
: 1
[1] 132.6923
--------------------------------------------------------
: 111
: 1
[1] 130.8654
--------------------------------------------------------
: 112
: 1
[1] 134.5
--------------------------------------------------------
: 113
: 1
[1] 143.4808
--------------------------------------------------------
: 114
: 1
[1] 129.7115
--------------------------------------------------------
: 115
: 1
[1] 131.1731
--------------------------------------------------------
: 116
: 1
[1] 136.3654
--------------------------------------------------------
: 117
: 1
[1] 135.6154
--------------------------------------------------------
: 118
: 1
[1] 137.1923
--------------------------------------------------------
: 119
: 1
[1] 132.6731
--------------------------------------------------------
: 120
: 1
[1] 130.7308
--------------------------------------------------------
: 101
: 2
[1] 133.2885
--------------------------------------------------------
: 102
: 2
[1] 139.7692
--------------------------------------------------------
: 103
: 2
[1] 138.8462
--------------------------------------------------------
: 104
: 2
[1] 134.8077
--------------------------------------------------------
: 105
: 2
[1] 129.2885
--------------------------------------------------------
: 106
: 2
[1] 136.0962
--------------------------------------------------------
: 107
: 2
[1] 136.5
--------------------------------------------------------
: 108
: 2
[1] 132.5769
--------------------------------------------------------
: 109
: 2
[1] 133.2692
--------------------------------------------------------
: 110
: 2
[1] 131.5
--------------------------------------------------------
: 111
: 2
[1] 130.0385
--------------------------------------------------------
: 112
: 2
[1] 125.2692
--------------------------------------------------------
: 113
: 2
[1] 132.0577
--------------------------------------------------------
: 114
: 2
[1] 134.6731
--------------------------------------------------------
: 115
: 2
[1] 127.8846
--------------------------------------------------------
: 116
: 2
[1] 135.1346
--------------------------------------------------------
: 117
: 2
[1] 134.4615
--------------------------------------------------------
: 118
: 2
[1] 142.5
--------------------------------------------------------
: 119
: 2
[1] 134.7885
--------------------------------------------------------
: 120
: 2
[1] 128.3654
apply(store.df[, 2:9], MARGIN=2, FUN=mean)
Year Week p1sales p2sales p1price p2price
1.5000000 26.5000000 133.0485577 100.1567308 2.5443750 2.6995192
p1prom p2prom
0.1000000 0.1384615
apply(store.df[, 2:9], 2, mean)
Year Week p1sales p2sales p1price p2price
1.5000000 26.5000000 133.0485577 100.1567308 2.5443750 2.6995192
p1prom p2prom
0.1000000 0.1384615
apply(store.df[, 2:9], 2, sd)
Year Week p1sales p2sales p1price p2price
0.5001202 15.0119401 28.3725990 24.4241905 0.2948819 0.3292181
p1prom p2prom
0.3000721 0.3454668
apply(store.df[, 2:9], 2, function(x) { mean(x) - median(x) } )
Year Week p1sales p2sales p1price p2price p1prom
0.0000000 0.0000000 4.0485577 4.1567308 0.0543750 0.1095192 0.1000000
p2prom
0.1384615