library(tidyverse)
Loading tidyverse: ggplot2
Loading tidyverse: tibble
Loading tidyverse: tidyr
Loading tidyverse: readr
Loading tidyverse: purrr
Loading tidyverse: dplyr
package ‘tibble’ was built under R version 3.4.1package ‘tidyr’ was built under R version 3.4.1package ‘purrr’ was built under R version 3.4.1package ‘dplyr’ was built under R version 3.4.1Conflicts with tidy packages -----------------------------------------
filter(): dplyr, stats
lag():    dplyr, stats
educinc <- read.csv("/Users/cruz/Desktop/R11455207_SL040.csv", header=TRUE)
print(educinc)
educinc2 <- rename(educinc,
                   state = Geo_QName,
                   BA = SE_T025_005,
                   MA = SE_T025_006)
educinc2 <- mutate(educinc2, IncBelow75k = SE_T056_002 + SE_T056_003 + SE_T056_004 + SE_T056_005 + SE_T056_006 + SE_T056_007 + SE_T056_008 + SE_T056_009 + SE_T056_010 + SE_T056_011 + SE_T056_012, IncAbove75k = SE_T056_013 + SE_T056_014 + SE_T056_015 + SE_T056_016 + SE_T056_017)
educinc2 <- select(educinc2, state, BA, MA, IncBelow75k, IncAbove75k)
print(educinc2)
educinc3 <- mutate(educinc2, "HigherEdProp" = MA/ (MA + BA),
             "IncAbove75kProp"= IncAbove75k/ (IncAbove75k + IncBelow75k))
educinc3 <- select(educinc3, state, HigherEdProp, IncAbove75kProp)
print(educinc3)
library(ggplot2) 
ggplot(data = educinc3) + 
  geom_point(mapping = aes(x = HigherEdProp, y = IncAbove75kProp), color = "blue")

`

LS0tCnRpdGxlOiAiQ3J1el9NQTcxMl9IVzIiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCmBgYHtyfQpsaWJyYXJ5KHRpZHl2ZXJzZSkKYGBgCmBgYHtyfQplZHVjaW5jIDwtIHJlYWQuY3N2KCIvVXNlcnMvY3J1ei9EZXNrdG9wL1IxMTQ1NTIwN19TTDA0MC5jc3YiLCBoZWFkZXI9VFJVRSkKcHJpbnQoZWR1Y2luYykKYGBgCgpgYGB7cn0KZWR1Y2luYzIgPC0gcmVuYW1lKGVkdWNpbmMsCiAgICAgICAgICAgICAgICAgICBzdGF0ZSA9IEdlb19RTmFtZSwKICAgICAgICAgICAgICAgICAgIEJBID0gU0VfVDAyNV8wMDUsCiAgICAgICAgICAgICAgICAgICBNQSA9IFNFX1QwMjVfMDA2KQoKZWR1Y2luYzIgPC0gbXV0YXRlKGVkdWNpbmMyLCBJbmNCZWxvdzc1ayA9IFNFX1QwNTZfMDAyICsgU0VfVDA1Nl8wMDMgKyBTRV9UMDU2XzAwNCArIFNFX1QwNTZfMDA1ICsgU0VfVDA1Nl8wMDYgKyBTRV9UMDU2XzAwNyArIFNFX1QwNTZfMDA4ICsgU0VfVDA1Nl8wMDkgKyBTRV9UMDU2XzAxMCArIFNFX1QwNTZfMDExICsgU0VfVDA1Nl8wMTIsIEluY0Fib3ZlNzVrID0gU0VfVDA1Nl8wMTMgKyBTRV9UMDU2XzAxNCArIFNFX1QwNTZfMDE1ICsgU0VfVDA1Nl8wMTYgKyBTRV9UMDU2XzAxNykKCmVkdWNpbmMyIDwtIHNlbGVjdChlZHVjaW5jMiwgc3RhdGUsIEJBLCBNQSwgSW5jQmVsb3c3NWssIEluY0Fib3ZlNzVrKQoKcHJpbnQoZWR1Y2luYzIpCgpgYGAKCmBgYHtyfQplZHVjaW5jMyA8LSBtdXRhdGUoZWR1Y2luYzIsICJIaWdoZXJFZFByb3AiID0gTUEvIChNQSArIEJBKSwKICAgICAgICAgICAgICJJbmNBYm92ZTc1a1Byb3AiPSBJbmNBYm92ZTc1ay8gKEluY0Fib3ZlNzVrICsgSW5jQmVsb3c3NWspKQplZHVjaW5jMyA8LSBzZWxlY3QoZWR1Y2luYzMsIHN0YXRlLCBIaWdoZXJFZFByb3AsIEluY0Fib3ZlNzVrUHJvcCkKCnByaW50KGVkdWNpbmMzKQpgYGAKYGBge3J9CmxpYnJhcnkoZ2dwbG90MikgCmdncGxvdChkYXRhID0gZWR1Y2luYzMpICsgCiAgZ2VvbV9wb2ludChtYXBwaW5nID0gYWVzKHggPSBIaWdoZXJFZFByb3AsIHkgPSBJbmNBYm92ZTc1a1Byb3ApLCBjb2xvciA9ICJibHVlIikKYGBgCgpgCgo=