Sameer Mathur
mt <- mtcars[c("mpg", "hp", "wt", "am")]
head(mt)
mpg hp wt am
Mazda RX4 21.0 110 2.620 1
Mazda RX4 Wag 21.0 110 2.875 1
Datsun 710 22.8 93 2.320 1
Hornet 4 Drive 21.4 110 3.215 0
Hornet Sportabout 18.7 175 3.440 0
Valiant 18.1 105 3.460 0
myvars <- c("mpg", "hp", "wt")
aggregate(mtcars[myvars], by=list(am=mtcars$am), mean)
am mpg hp wt
1 0 17.14737 160.2632 3.768895
2 1 24.39231 126.8462 2.411000
aggregate(mtcars[myvars], by=list(am=mtcars$am), sd)
am mpg hp wt
1 0 3.833966 53.90820 0.7774001
2 1 6.166504 84.06232 0.6169816
mystats <- function(x, na.omit=FALSE){
if (na.omit)
x <- x[!is.na(x)]
m <- mean(x)
n <- length(x)
s <- sd(x)
skew <- sum((x-m)^3/s^3)/n
kurt <- sum((x-m)^4/s^4)/n - 3
return(c(n=n, mean=m, stdev=s, skew=skew, kurtosis=kurt))
}
dstats <- function(x)sapply(x, mystats)
myvars <- c("mpg", "hp", "wt")
by(mtcars[myvars], mtcars$am, dstats)
mtcars$am: 0
mpg hp wt
n 19.00000000 19.00000000 19.0000000
mean 17.14736842 160.26315789 3.7688947
stdev 3.83396639 53.90819573 0.7774001
skew 0.01395038 -0.01422519 0.9759294
kurtosis -0.80317826 -1.20969733 0.1415676
--------------------------------------------------------
mtcars$am: 1
mpg hp wt
n 13.00000000 13.0000000 13.0000000
mean 24.39230769 126.8461538 2.4110000
stdev 6.16650381 84.0623243 0.6169816
skew 0.05256118 1.3598859 0.2103128
kurtosis -1.45535200 0.5634635 -1.1737358