The objectives of this problem set is to orient you to a number of activities in R
. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion name your final output .html
file as: YourName_ANLY512-Section-Year-Semester.html
and upload it to the “Problem Set 2” assignmenet on Moodle.
anscombe
data that is part of the library(datasets)
in R
. And assign that data to a new object called data
.library(datasets)
data("anscombe")
data = anscombe
data
## x1 x2 x3 x4 y1 y2 y3 y4
## 1 10 10 10 8 8.04 9.14 7.46 6.58
## 2 8 8 8 8 6.95 8.14 6.77 5.76
## 3 13 13 13 8 7.58 8.74 12.74 7.71
## 4 9 9 9 8 8.81 8.77 7.11 8.84
## 5 11 11 11 8 8.33 9.26 7.81 8.47
## 6 14 14 14 8 9.96 8.10 8.84 7.04
## 7 6 6 6 8 7.24 6.13 6.08 5.25
## 8 4 4 4 19 4.26 3.10 5.39 12.50
## 9 12 12 12 8 10.84 9.13 8.15 5.56
## 10 7 7 7 8 4.82 7.26 6.42 7.91
## 11 5 5 5 8 5.68 4.74 5.73 6.89
fBasics()
package!)library(fBasics)
## Loading required package: timeDate
## Loading required package: timeSeries
##
## Rmetrics Package fBasics
## Analysing Markets and calculating Basic Statistics
## Copyright (C) 2005-2014 Rmetrics Association Zurich
## Educational Software for Financial Engineering and Computational Science
## Rmetrics is free software and comes with ABSOLUTELY NO WARRANTY.
## https://www.rmetrics.org --- Mail to: info@rmetrics.org
colMeans(data, na.rm = FALSE, dims = 1 )
## x1 x2 x3 x4 y1 y2 y3 y4
## 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909 7.500000 7.500909
colVars(data, na.rm = FALSE)
## x1 x2 x3 x4 y1 y2 y3
## 11.000000 11.000000 11.000000 11.000000 4.127269 4.127629 4.122620
## y4
## 4.123249
cor(data, y = NULL)
## x1 x2 x3 x4 y1 y2
## x1 1.0000000 1.0000000 1.0000000 -0.5000000 0.8164205 0.8162365
## x2 1.0000000 1.0000000 1.0000000 -0.5000000 0.8164205 0.8162365
## x3 1.0000000 1.0000000 1.0000000 -0.5000000 0.8164205 0.8162365
## x4 -0.5000000 -0.5000000 -0.5000000 1.0000000 -0.5290927 -0.7184365
## y1 0.8164205 0.8164205 0.8164205 -0.5290927 1.0000000 0.7500054
## y2 0.8162365 0.8162365 0.8162365 -0.7184365 0.7500054 1.0000000
## y3 0.8162867 0.8162867 0.8162867 -0.3446610 0.4687167 0.5879193
## y4 -0.3140467 -0.3140467 -0.3140467 0.8165214 -0.4891162 -0.4780949
## y3 y4
## x1 0.8162867 -0.3140467
## x2 0.8162867 -0.3140467
## x3 0.8162867 -0.3140467
## x4 -0.3446610 0.8165214
## y1 0.4687167 -0.4891162
## y2 0.5879193 -0.4780949
## y3 1.0000000 -0.1554718
## y4 -0.1554718 1.0000000
pairs(data, main="Paired Scatter Plot")
par(mfrow=c(2,2))
plot(data$x1, data$y1, pch=19)
plot(data$x2, data$y2, pch=19)
plot(data$x3, data$y3, pch=19)
plot(data$x4, data$y4, pch=19)
lm()
function.lm1 = lm(data$y1 ~ data$x1)
lm1
##
## Call:
## lm(formula = data$y1 ~ data$x1)
##
## Coefficients:
## (Intercept) data$x1
## 3.0001 0.5001
lm2 = lm(data$y2 ~ data$x2)
lm2
##
## Call:
## lm(formula = data$y2 ~ data$x2)
##
## Coefficients:
## (Intercept) data$x2
## 3.001 0.500
lm3 = lm(data$y3 ~ data$x3)
lm3
##
## Call:
## lm(formula = data$y3 ~ data$x3)
##
## Coefficients:
## (Intercept) data$x3
## 3.0025 0.4997
lm4 = lm(data$y4 ~ data$x4)
lm4
##
## Call:
## lm(formula = data$y4 ~ data$x4)
##
## Coefficients:
## (Intercept) data$x4
## 3.0017 0.4999
par(mfrow=c(2,2))
plot(data$x1, data$y1, pch=19)
abline(lm1, col="red")
plot(data$x2, data$y2, pch=19)
abline(lm2, col="red")
plot(data$x3, data$y3, pch=19)
abline(lm3, col="red")
plot(data$x4, data$y4, pch=19)
abline(lm4, col="red")
summary(lm1)
Call: lm(formula = data\(y1 ~ data\)x1)
Residuals: Min 1Q Median 3Q Max -1.92127 -0.45577 -0.04136 0.70941 1.83882
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0001 1.1247 2.667 0.02573 * data$x1 0.5001 0.1179 4.241 0.00217 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual standard error: 1.237 on 9 degrees of freedom Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295 F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
anova(lm1)
Analysis of Variance Table
Response: data\(y1 Df Sum Sq Mean Sq F value Pr(>F) data\)x1 1 27.510 27.5100 17.99 0.00217 ** Residuals 9 13.763 1.5292
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
summary(lm2)
Call: lm(formula = data\(y2 ~ data\)x2)
Residuals: Min 1Q Median 3Q Max -1.9009 -0.7609 0.1291 0.9491 1.2691
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.001 1.125 2.667 0.02576 * data$x2 0.500 0.118 4.239 0.00218 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual standard error: 1.237 on 9 degrees of freedom Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179
anova(lm2)
Analysis of Variance Table
Response: data\(y2 Df Sum Sq Mean Sq F value Pr(>F) data\)x2 1 27.500 27.5000 17.966 0.002179 ** Residuals 9 13.776 1.5307
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
summary(lm3)
Call: lm(formula = data\(y3 ~ data\)x3)
Residuals: Min 1Q Median 3Q Max -1.1586 -0.6146 -0.2303 0.1540 3.2411
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0025 1.1245 2.670 0.02562 * data$x3 0.4997 0.1179 4.239 0.00218 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual standard error: 1.236 on 9 degrees of freedom Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176
anova(lm3)
Analysis of Variance Table
Response: data\(y3 Df Sum Sq Mean Sq F value Pr(>F) data\)x3 1 27.470 27.4700 17.972 0.002176 ** Residuals 9 13.756 1.5285
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
summary(lm4)
Call: lm(formula = data\(y4 ~ data\)x4)
Residuals: Min 1Q Median 3Q Max -1.751 -0.831 0.000 0.809 1.839
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0017 1.1239 2.671 0.02559 * data$x4 0.4999 0.1178 4.243 0.00216 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual standard error: 1.236 on 9 degrees of freedom Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297 F-statistic: 18 on 1 and 9 DF, p-value: 0.002165
anova(lm4)
Analysis of Variance Table
Response: data\(y4 Df Sum Sq Mean Sq F value Pr(>F) data\)x4 1 27.490 27.4900 18.003 0.002165 ** Residuals 9 13.742 1.5269
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
From Anscombe’s Quartet, I think too many statistic numbers cannot simplely and directly tell us conclusions. Instead, it’s every simple and easy for us to visualize the data which can give us a clear picture of what’s going on.
Data visualization is the presentation of data in a pictorial or graphical format. It helps us to focus on the information that is relevant and important, representing the data so that we can immediately understand what’s going on. Or we have to do as many researches as we can to identify all the calculated numbers’ meanings. After that, we may be able to fully understand the data. So Data Visualization is really helpful and save us a lot of time.