Sameer Mathur
library(vcd)
counts <- table(Arthritis$Improved)
counts
None Some Marked
42 14 28
barplot(counts,
main="Simple Bar Plot",
xlab="Improvement", ylab="Frequency")
barplot(counts,
main="Horizontal Bar Plot",
xlab="Frequency", ylab="Improvement",
horiz=TRUE)
library(vcd)
counts <- table(Arthritis$Improved, Arthritis$Treatment)
counts
Placebo Treated
None 29 13
Some 7 7
Marked 7 21
barplot(counts,
main="Stacked Bar Plot",
xlab="Treatment", ylab="Frequency",
col=c("red", "yellow","green"),
legend=rownames(counts))
barplot(counts,
main="Grouped Bar Plot",
xlab="Treatment", ylab="Frequency",
col=c("red", "yellow", "green"),
legend=rownames(counts), beside=TRUE)
states <- data.frame(state.region, state.x77)
means <- aggregate(states$Illiteracy, by=list(state.region), FUN=mean)
means
Group.1 x
1 Northeast 1.000000
2 South 1.737500
3 North Central 0.700000
4 West 1.023077
means <- means[order(means$x),]
means
Group.1 x
3 North Central 0.700000
1 Northeast 1.000000
4 West 1.023077
2 South 1.737500
barplot(means$x, names.arg=means$Group.1)
title("Mean Illiteracy Rate")
library(vcd)
attach(Arthritis)
counts <- table(Treatment,Improved)
spine(counts, main="Spinogram Example")
detach(Arthritis)