library(netmeta)
## Loading required package: meta
## Loading 'meta' package (version 4.8-4).
## Type 'help(meta)' for a brief overview.
## Loading 'netmeta' package (version 0.9-6).
## Type 'help(netmeta-package)' for a brief overview.
data(Senn2013)
# Fixed effect model (default)
net1 <- netmeta(TE, seTE, treat1, treat2, studlab,
data=Senn2013, sm="MD")
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
as.data.frame(net1)
##               studlab treat1 treat2    TE   seTE  seTE.adj TE.nma.fixed
## 1        DeFronzo1995   metf   plac -1.90 0.1414 0.1414000  -1.11411019
## 2           Lewin2007   metf   plac -0.82 0.0992 0.0992000  -1.11411019
## 3          Willms1999   acar   metf  0.20 0.3579 0.3883779   0.28674122
## 4        Davidson2007   plac   rosi  1.34 0.1435 0.1435000   1.20184201
## 5   Wolffenbuttel1999   plac   rosi  1.10 0.1141 0.1141000   1.20184201
## 6          Kipnes2001   piog   plac -1.30 0.1268 0.1268000  -1.06643311
## 7         Kerenyi2004   plac   rosi  0.77 0.1078 0.1078000   1.20184201
## 8        Hanefeld2004   metf   piog -0.16 0.0849 0.0849000  -0.04767708
## 9          Derosa2004   piog   rosi  0.10 0.1831 0.1831000   0.13540890
## 10          Baksi2004   plac   rosi  1.30 0.1014 0.1014000   1.20184201
## 11     Rosenstock2008   plac   rosi  1.09 0.2263 0.2263000   1.20184201
## 12            Zhu2003   plac   rosi  1.50 0.1624 0.1624000   1.20184201
## 13           Yang2003   metf   rosi  0.14 0.2239 0.2239000   0.08773182
## 14 Vongthavaravat2002   rosi   sulf -1.20 0.1436 0.1436000  -0.76234486
## 15          Oyama2008   acar   sulf -0.40 0.1549 0.1549000  -0.38787182
## 16          Costa1997   acar   plac -0.80 0.1432 0.1432000  -0.82736897
## 17      Hermansen2007   plac   sita  0.57 0.1291 0.1291000   0.57000000
## 18         Garber2008   plac   vild  0.70 0.1273 0.1273000   0.70000000
## 19           Alex1998   metf   sulf -0.37 0.1184 0.1184000  -0.67461304
## 20       Johnston1994   migl   plac -0.74 0.1839 0.1839000  -0.94393296
## 21      Johnston1998a   migl   plac -1.41 0.2235 0.2235000  -0.94393296
## 22            Kim2007   metf   rosi  0.00 0.2339 0.2339000   0.08773182
## 23      Johnston1998b   migl   plac -0.68 0.2828 0.2828000  -0.94393296
## 24 Gonzalez-Ortiz2004   metf   plac -0.40 0.4356 0.4356000  -1.11411019
## 25         Stucci1996   benf   plac -0.23 0.3467 0.3467000  -0.90518645
## 26         Moulin2006   benf   plac -1.01 0.1366 0.1366000  -0.90518645
## 27         Willms1999   metf   plac -1.20 0.3758 0.4125252  -1.11411019
## 28         Willms1999   acar   plac -1.00 0.4669 0.8241911  -0.82736897
##    seTE.nma.fixed    w.fixed      Q.fixed TE.nma.random seTE.nma.random
## 1      0.05961148  50.015105 3.089047e+01  -1.126775351       0.1542666
## 2      0.05961148 101.619407 8.790160e+00  -1.126775351       0.1542666
## 3      0.11456703   6.629656 4.988179e-02   0.284990413       0.2580630
## 4      0.04766217  48.561959 9.269327e-01   1.233455753       0.1278016
## 5      0.04766217  76.811936 7.966777e-01   1.233455753       0.1278016
## 6      0.07584751  62.195862 3.393002e+00  -1.129091954       0.2196381
## 7      0.04766217  86.052299 1.604768e+01   1.233455753       0.1278016
## 8      0.06980214 138.734547 1.750336e+00   0.002316603       0.2255576
## 9      0.08177728  29.827943 3.739799e-02   0.104363799       0.2240281
## 10     0.04766217  97.257721 9.370773e-01   1.233455753       0.1278016
## 11     0.04766217  19.526792 2.442535e-01   1.233455753       0.1278016
## 12     0.04766217  37.916475 3.370706e+00   1.233455753       0.1278016
## 13     0.06766230  19.947653 5.449624e-02   0.106680402       0.1651709
## 14     0.09201201  48.494347 9.288705e+00  -0.816896953       0.2371470
## 15     0.11310215  41.677069 6.130393e-03  -0.425226138       0.2654975
## 16     0.10852085  48.765644 3.652842e-02  -0.841784938       0.2458203
## 17     0.12910000  59.999484 1.243185e-27   0.570000000       0.3540957
## 18     0.12730000  61.708245 7.304926e-27   0.700000000       0.3534434
## 19     0.08854114  71.334003 6.619018e+00  -0.710216551       0.2352538
## 20     0.12690612  29.568993 1.229735e+00  -0.949726378       0.2317585
## 21     0.12690612  20.019118 4.348523e+00  -0.949726378       0.2317585
## 22     0.06766230  18.278458 1.406870e-01   0.106680402       0.1651709
## 23     0.12690612  12.503776 8.710207e-01  -0.949726378       0.2317585
## 24     0.05961148   5.270166 2.687539e+00  -1.126775351       0.1542666
## 25     0.12709113   8.319406 3.792624e+00  -0.731147215       0.2860751
## 26     0.12709113  53.591832 5.887535e-01  -0.731147215       0.2860751
## 27     0.05961148   5.876234 4.334933e-02  -1.126775351       0.1542666
## 28     0.10852085   1.472123 4.387144e-02  -0.841784938       0.2458203
##    w.random
## 1  7.769351
## 2  8.434721
## 3  3.219115
## 4  7.733403
## 5  8.214515
## 6  8.013131
## 7  8.309943
## 8  8.626272
## 9  7.030246
## 10 8.403440
## 11 6.252790
## 12 7.402435
## 13 6.295321
## 14 7.731687
## 15 7.535174
## 16 7.738551
## 17 7.975516
## 18 8.004981
## 19 8.147603
## 20 7.015765
## 21 6.302421
## 22 6.118972
## 23 5.299620
## 24 3.350485
## 25 4.368380
## 26 7.850743
## 27 2.970312
## 28 1.515938
as.data.frame(net1, details=TRUE)
##               studlab treat1 treat2    TE   seTE  seTE.adj TE.nma.fixed
## 1        DeFronzo1995   metf   plac -1.90 0.1414 0.1414000  -1.11411019
## 2           Lewin2007   metf   plac -0.82 0.0992 0.0992000  -1.11411019
## 3          Willms1999   acar   metf  0.20 0.3579 0.3883779   0.28674122
## 4        Davidson2007   plac   rosi  1.34 0.1435 0.1435000   1.20184201
## 5   Wolffenbuttel1999   plac   rosi  1.10 0.1141 0.1141000   1.20184201
## 6          Kipnes2001   piog   plac -1.30 0.1268 0.1268000  -1.06643311
## 7         Kerenyi2004   plac   rosi  0.77 0.1078 0.1078000   1.20184201
## 8        Hanefeld2004   metf   piog -0.16 0.0849 0.0849000  -0.04767708
## 9          Derosa2004   piog   rosi  0.10 0.1831 0.1831000   0.13540890
## 10          Baksi2004   plac   rosi  1.30 0.1014 0.1014000   1.20184201
## 11     Rosenstock2008   plac   rosi  1.09 0.2263 0.2263000   1.20184201
## 12            Zhu2003   plac   rosi  1.50 0.1624 0.1624000   1.20184201
## 13           Yang2003   metf   rosi  0.14 0.2239 0.2239000   0.08773182
## 14 Vongthavaravat2002   rosi   sulf -1.20 0.1436 0.1436000  -0.76234486
## 15          Oyama2008   acar   sulf -0.40 0.1549 0.1549000  -0.38787182
## 16          Costa1997   acar   plac -0.80 0.1432 0.1432000  -0.82736897
## 17      Hermansen2007   plac   sita  0.57 0.1291 0.1291000   0.57000000
## 18         Garber2008   plac   vild  0.70 0.1273 0.1273000   0.70000000
## 19           Alex1998   metf   sulf -0.37 0.1184 0.1184000  -0.67461304
## 20       Johnston1994   migl   plac -0.74 0.1839 0.1839000  -0.94393296
## 21      Johnston1998a   migl   plac -1.41 0.2235 0.2235000  -0.94393296
## 22            Kim2007   metf   rosi  0.00 0.2339 0.2339000   0.08773182
## 23      Johnston1998b   migl   plac -0.68 0.2828 0.2828000  -0.94393296
## 24 Gonzalez-Ortiz2004   metf   plac -0.40 0.4356 0.4356000  -1.11411019
## 25         Stucci1996   benf   plac -0.23 0.3467 0.3467000  -0.90518645
## 26         Moulin2006   benf   plac -1.01 0.1366 0.1366000  -0.90518645
## 27         Willms1999   metf   plac -1.20 0.3758 0.4125252  -1.11411019
## 28         Willms1999   acar   plac -1.00 0.4669 0.8241911  -0.82736897
##    seTE.nma.fixed lower.nma.fixed upper.nma.fixed leverage.fixed
## 1      0.05961148     -1.23094654     -0.99727384     0.17773009
## 2      0.05961148     -1.23094654     -0.99727384     0.36110743
## 3      0.11456703      0.06219397      0.51128847     0.08701825
## 4      0.04766217      1.10842588      1.29525814     0.11031733
## 5      0.04766217      1.10842588      1.29525814     0.17449229
## 6      0.07584751     -1.21509149     -0.91777473     0.35780311
## 7      0.04766217      1.10842588      1.29525814     0.19548346
## 8      0.06980214     -0.18448676      0.08913259     0.67596166
## 9      0.08177728     -0.02487163      0.29568943     0.19947509
## 10     0.04766217      1.10842588      1.29525814     0.22093862
## 11     0.04766217      1.10842588      1.29525814     0.04435866
## 12     0.04766217      1.10842588      1.29525814     0.08613417
## 13     0.06766230     -0.04488385      0.22034749     0.09132408
## 14     0.09201201     -0.94268508     -0.58200464     0.41056332
## 15     0.11310215     -0.60954796     -0.16619569     0.53313704
## 16     0.10852085     -1.04006592     -0.61467202     0.57430196
## 17     0.12910000      0.31696865      0.82303135     1.00000000
## 18     0.12730000      0.45049658      0.94950342     1.00000000
## 19     0.08854114     -0.84815049     -0.50107559     0.55922533
## 20     0.12690612     -1.19266439     -0.69520154     0.47621347
## 21     0.12690612     -1.19266439     -0.69520154     0.32241117
## 22     0.06766230     -0.04488385      0.22034749     0.08368220
## 23     0.12690612     -1.19266439     -0.69520154     0.20137536
## 24     0.05961148     -1.23094654     -0.99727384     0.01872768
## 25     0.12709113     -1.15428050     -0.65609240     0.13437635
## 26     0.12709113     -1.15428050     -0.65609240     0.86562365
## 27     0.05961148     -1.23094654     -0.99727384     0.02088136
## 28     0.10852085     -1.04006592     -0.61467202     0.01733686
##       w.fixed      Q.fixed TE.nma.random seTE.nma.random lower.nma.random
## 1   50.015105 3.089047e+01  -1.126775351       0.1542666     -1.429132296
## 2  101.619407 8.790160e+00  -1.126775351       0.1542666     -1.429132296
## 3    6.629656 4.988179e-02   0.284990413       0.2580630     -0.220803689
## 4   48.561959 9.269327e-01   1.233455753       0.1278016      0.982969138
## 5   76.811936 7.966777e-01   1.233455753       0.1278016      0.982969138
## 6   62.195862 3.393002e+00  -1.129091954       0.2196381     -1.559574779
## 7   86.052299 1.604768e+01   1.233455753       0.1278016      0.982969138
## 8  138.734547 1.750336e+00   0.002316603       0.2255576     -0.439768099
## 9   29.827943 3.739799e-02   0.104363799       0.2240281     -0.334723275
## 10  97.257721 9.370773e-01   1.233455753       0.1278016      0.982969138
## 11  19.526792 2.442535e-01   1.233455753       0.1278016      0.982969138
## 12  37.916475 3.370706e+00   1.233455753       0.1278016      0.982969138
## 13  19.947653 5.449624e-02   0.106680402       0.1651709     -0.217048707
## 14  48.494347 9.288705e+00  -0.816896953       0.2371470     -1.281696573
## 15  41.677069 6.130393e-03  -0.425226138       0.2654975     -0.945591609
## 16  48.765644 3.652842e-02  -0.841784938       0.2458203     -1.323583884
## 17  59.999484 1.243185e-27   0.570000000       0.3540957     -0.124014732
## 18  61.708245 7.304926e-27   0.700000000       0.3534434      0.007263732
## 19  71.334003 6.619018e+00  -0.710216551       0.2352538     -1.171305441
## 20  29.568993 1.229735e+00  -0.949726378       0.2317585     -1.403964765
## 21  20.019118 4.348523e+00  -0.949726378       0.2317585     -1.403964765
## 22  18.278458 1.406870e-01   0.106680402       0.1651709     -0.217048707
## 23  12.503776 8.710207e-01  -0.949726378       0.2317585     -1.403964765
## 24   5.270166 2.687539e+00  -1.126775351       0.1542666     -1.429132296
## 25   8.319406 3.792624e+00  -0.731147215       0.2860751     -1.291844014
## 26  53.591832 5.887535e-01  -0.731147215       0.2860751     -1.291844014
## 27   5.876234 4.334933e-02  -1.126775351       0.1542666     -1.429132296
## 28   1.472123 4.387144e-02  -0.841784938       0.2458203     -1.323583884
##    upper.nma.random w.random treat1.pos treat2.pos
## 1       -0.82441841 7.769351          3          6
## 2       -0.82441841 8.434721          3          6
## 3        0.79078451 3.219115          1          3
## 4        1.48394237 7.733403          6          7
## 5        1.48394237 8.214515          6          7
## 6       -0.69860913 8.013131          5          6
## 7        1.48394237 8.309943          6          7
## 8        0.44440130 8.626272          3          5
## 9        0.54345087 7.030246          5          7
## 10       1.48394237 8.403440          6          7
## 11       1.48394237 6.252790          6          7
## 12       1.48394237 7.402435          6          7
## 13       0.43040951 6.295321          3          7
## 14      -0.35209733 7.731687          7          9
## 15       0.09513933 7.535174          1          9
## 16      -0.35998599 7.738551          1          6
## 17       1.26401473 7.975516          6          8
## 18       1.39273627 8.004981          6         10
## 19      -0.24912766 8.147603          3          9
## 20      -0.49548799 7.015765          4          6
## 21      -0.49548799 6.302421          4          6
## 22       0.43040951 6.118972          3          7
## 23      -0.49548799 5.299620          4          6
## 24      -0.82441841 3.350485          3          6
## 25      -0.17045042 4.368380          2          6
## 26      -0.17045042 7.850743          2          6
## 27      -0.82441841 2.970312          3          6
## 28      -0.35998599 1.515938          1          6
data(Senn2013)
# Generation of an object of class 'netmeta' with reference treatment 'plac', i.e. placebo
net1 <- netmeta(TE, seTE, treat1, treat2, studlab,
data=Senn2013, sm="MD", reference="plac")
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
# Decomposition of Cochran's Q
decomp.design(net1)
## Q statistics to assess homogeneity / consistency
## 
##                     Q df  p-value
## Total           96.99 18 < 0.0001
## Within designs  74.46 11 < 0.0001
## Between designs 22.53  7   0.0021
## 
## Design-specific decomposition of within-designs Q statistic
## 
##     Design     Q df  p-value
##  metf:rosi  0.19  1   0.6655
##  plac:benf  4.38  1   0.0363
##  plac:metf 42.16  2 < 0.0001
##  plac:migl  6.45  2   0.0398
##  plac:rosi 21.27  5   0.0007
## 
## Between-designs Q statistic after detaching of single designs
## 
##  Detached design     Q df  p-value
##        acar:sulf 22.52  6   0.0010
##        metf:piog 17.13  6   0.0088
##        metf:rosi 22.52  6   0.0010
##        metf:sulf  7.51  6   0.2760
##        piog:rosi 22.48  6   0.0010
##        plac:acar 22.44  6   0.0010
##        plac:metf 22.07  6   0.0012
##        plac:piog 17.25  6   0.0084
##        plac:rosi 16.29  6   0.0123
##        rosi:sulf  6.77  6   0.3425
##   plac:acar:metf 22.38  5   0.0004
## 
## Q statistic to assess consistency under the assumption of
## a full design-by-treatment interaction random effects model
## 
##                    Q df  p-value tau.within tau2.within
## Between designs 2.19  7   0.9483     0.3797      0.1442
data(dietaryfat)
# Transform data from arm-based format to contrast-based format 
#Using incidence rate ratios (sm="IRR") as effect measure.
# Note, the argument 'sm' is not necessary as this is the default 
#in R function metainc called internally
p1 <- pairwise(list(treat1, treat2, treat3),
list(d1, d2, d3),
time=list(years1, years2, years3),
studlab=ID,
data=dietaryfat, sm="IRR")
p1
##             TE       seTE                    studlab treat1 treat2 event1
## 1   0.02202212 0.13363595                     2 DART      1      2    113
## 2  -1.66363256 1.09544512      10 London Corn /Olive      1      2      1
## 3  -1.23608328 1.15470054      10 London Corn /Olive      1      3      1
## 4   0.42754928 0.73029674      10 London Corn /Olive      2      3      5
## 5   0.13122887 0.30276504          11 London Low Fat      1      2     24
## 6  -0.05863541 0.08803255      14 Minnesota Coronary      1      2    248
## 7   0.15090580 0.26071507                15 MRC Soya      1      2     31
## 8   0.31442233 0.19031014         18 Oslo Diet-Heart      1      2     65
## 9   1.13441029 1.15470054                   22 STARS      1      2      3
## 10 -0.40523688 0.24770004       23 Sydney Diet-Heart      1      2     28
## 11  0.04519334 0.10675600 26 Veterans Administration      1      2    177
## 12  0.67701780 1.22474487 27 Veterans Diet & Skin CA      1      2      2
##     time1 event2  time2 incr
## 1  1917.0    111 1925.0    0
## 2    43.6      5   41.3    0
## 3    43.6      3   38.0    0
## 4    41.3      3   38.0    0
## 5   393.5     20  373.9    0
## 6  4715.0    269 4823.0    0
## 7   715.0     28  751.0    0
## 8   885.0     48  895.0    0
## 9    87.8      1   91.0    0
## 10 1011.0     39  939.0    0
## 11 1544.0    174 1588.0    0
## 12  125.0      1  123.0    0
# Conduct network meta-analysis:
net1 <- netmeta(p1)
summary(net1)
## Number of studies: k = 10
## Number of treatments: n = 3
## Number of pairwise comparisons: m = 12
## Number of designs: d = 2
## 
## Fixed effect model
## 
## Treatment estimate (sm = 'IRR'):
##        1      2      3
## 1      . 1.0096 1.1714
## 2 0.9905      . 1.1603
## 3 0.8537 0.8618      .
## 
## Lower 95%-confidence limit:
##        1      2      3
## 1      . 0.9084 0.2921
## 2 0.8913      . 0.2902
## 3 0.2129 0.2155      .
## 
## Upper 95%-confidence limit:
##        1      2      3
## 1      . 1.1220 4.6969
## 2 1.1008      . 4.6400
## 3 3.4229 3.4464      .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.0043; I^2 = 11.1%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                     Q d.f.  p-value
## Total           10.12    9   0.3405
## Within designs   7.79    8   0.4546
## Between designs  2.34    1   0.1262
# Conduct network meta-analysis using incidence rate differences
# (sm="IRD").
p2 <- pairwise(list(treat1, treat2, treat3),
list(d1, d2, d3),
time=list(years1, years2, years3),
studlab=ID,
data=dietaryfat, sm="IRD")
net2 <- netmeta(p2)
summary(net2)
## Number of studies: k = 10
## Number of treatments: n = 3
## Number of pairwise comparisons: m = 12
## Number of designs: d = 2
## 
## Fixed effect model
## 
## Treatment estimate (sm = 'IRD'):
##         1      2       3
## 1       . 0.0000 -0.0411
## 2 -0.0000      . -0.0411
## 3  0.0411 0.0411       .
## 
## Lower 95%-confidence limit:
##         1       2       3
## 1       . -0.0060 -0.1395
## 2 -0.0060       . -0.1397
## 3 -0.0574 -0.0575       .
## 
## Upper 95%-confidence limit:
##        1      2      3
## 1      . 0.0060 0.0574
## 2 0.0060      . 0.0575
## 3 0.1395 0.1397      .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 < 0.0001; I^2 = 16.3%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                     Q d.f.  p-value
## Total           10.75    9   0.2931
## Within designs   7.96    8   0.4374
## Between designs  2.79    1   0.0947
# Draw network graph
netgraph(net1, points=TRUE, cex.points=3, cex=1.25)

tname <- c("Control","Diet", "Diet 2")
netgraph(net1, points=TRUE, cex.points=3, cex=1.25, labels=tname)

data(Senn2013)
# Fixed effect model (default)
net1 <- netmeta(TE, seTE, treat1, treat2, studlab,
data=Senn2013, sm="MD")
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
forest(net1, ref="plac")

forest(net1, xlim=c(-1.5,1), ref="plac",
xlab="HbA1c difference", rightcols=FALSE)

# Random effects effect model
net2 <- netmeta(TE, seTE, treat1, treat2, studlab,
data=Senn2013, sm="MD", comb.random=TRUE)
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
forest(net2, xlim=c(-1.5,1), ref="plac",
xlab="HbA1c difference")

# Add column with P-Scores on right side of forest plot
forest(net2, xlim=c(-1.5,1), ref="plac",
xlab="HbA1c difference",
rightcols=c("effect", "ci", "Pscore"),
rightlabs="P-Score",
just.addcols="right")

# Add column with P-Scores on left side of forest plot
forest(net2, xlim=c(-1.5,1), ref="plac",
xlab="HbA1c difference",
leftcols=c("studlab", "Pscore"),
leftlabs=c("Treatment", "P-Score"),
just.addcols="right")

# Sort forest plot by descending P-Score
forest(net2, xlim=c(-1.5,1), ref="plac",
xlab="HbA1c difference",
rightcols=c("effect", "ci", "Pscore"),
rightlabs="P-Score",just.addcols="right",
sortvar=-Pscore)

# Drop reference group and sort by and print number of studies with direct treatment comparisons
forest(net2, xlim=c(-1.5,1), ref="plac",
xlab="HbA1c difference",
leftcols=c("studlab", "k"),
leftlabs=c("Contrast\nto Placebo", "Direct\nComparisons"),
sortvar=-k,
drop=TRUE,
smlab="Random Effects Model")

# Use depression dataset
data(Linde2015)
# Define order of treatments
trts <- c("TCA", "SSRI", "SNRI", "NRI",
"Low-dose SARI", "NaSSa", "rMAO-A", "Hypericum",
"Placebo")
# Outcome labels
outcomes <- c("Early response", "Early remission")

# (1) Early response
p1 <- pairwise(treat = list(treatment1, treatment2, treatment3),
event = list(resp1, resp2, resp3),
n = list(n1, n2, n3),
studlab = id, data = Linde2015, sm = "OR")
## Warning: Comparisons with missing TE / seTE or zero seTE will not be
## considered in network meta-analysis.
## Comparisons will not be considered in network meta-analysis:
##  TE seTE studlab treat1  treat2 event1  n1 event2  n2 incr allstudies
##  NA   NA      14    TCA    SSRI     NA  10     NA  11    0      FALSE
##  NA   NA      18    TCA Placebo     NA  73     NA  73    0      FALSE
##  NA   NA      21    TCA  rMAO-A     NA  46     NA  98    0      FALSE
##  NA   NA      27   SSRI Placebo     NA  80     NA  81    0      FALSE
##  NA   NA      51    TCA  rMAO-A     NA  71     NA  71    0      FALSE
##  NA   NA     130    TCA   NaSSa     NA  35     NA  36    0      FALSE
##  NA   NA     131   SSRI    SNRI     NA 697     NA 688    0      FALSE
##  NA   NA     130    TCA Placebo     NA  35     NA  34    0      FALSE
##  NA   NA     130  NaSSa Placebo     NA  36     NA  34    0      FALSE
net1 <- netmeta(p1,
comb.fixed = FALSE, comb.random = TRUE,
seq = trts, ref = "Placebo")
## Warning: Comparisons with missing TE / seTE or zero seTE not considered in
## network meta-analysis.
## Comparisons not considered in network meta-analysis:
##  studlab treat1  treat2 TE seTE
##       14    TCA    SSRI NA   NA
##       18    TCA Placebo NA   NA
##       21    TCA  rMAO-A NA   NA
##       27   SSRI Placebo NA   NA
##       51    TCA  rMAO-A NA   NA
##      130  NaSSa Placebo NA   NA
##      130    TCA   NaSSa NA   NA
##      130    TCA Placebo NA   NA
##      131   SSRI    SNRI NA   NA
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
# (2) Early remission
p2 <- pairwise(treat = list(treatment1, treatment2, treatment3),
event = list(remi1, remi2, remi3),
n = list(n1, n2, n3),
studlab = id, data = Linde2015, sm = "OR")
## Warning: Comparisons with missing TE / seTE or zero seTE will not be
## considered in network meta-analysis.
## Comparisons will not be considered in network meta-analysis:
##  TE seTE studlab        treat1  treat2 event1  n1 event2  n2 incr
##  NA   NA       1           TCA    SNRI     NA  75     NA  78  0.0
##  NA   NA      11           TCA    SSRI     NA 108     NA  99  0.0
##  NA   NA      14           TCA    SSRI     NA  10     NA  11  0.0
##  NA   NA      18           TCA Placebo     NA  73     NA  73  0.0
##  NA   NA      20           TCA    SSRI     NA  55     NA  51  0.0
##  NA   NA      26          SSRI Placebo     NA 314     NA 154  0.0
##  NA   NA      53          SSRI   NaSSa     NA 122     NA 121  0.0
##  NA   NA      56           TCA    SSRI     NA  92     NA 380  0.0
##  NA   NA      73     Hypericum Placebo     NA  55     NA  57  0.0
##  NA   NA      90           TCA    SSRI     NA  42     NA  42  0.0
##  NA   NA      96           TCA    SSRI      0  30      0  29  0.5
##  NA   NA     121 Low-dose SARI   NaSSa     NA  43     NA  40  0.0
##  NA   NA     130           TCA   NaSSa     NA  35     NA  36  0.0
##  NA   NA       1           TCA Placebo     NA  75     NA  76  0.0
##  NA   NA      11           TCA Placebo     NA 108     NA 101  0.0
##  NA   NA      53          SSRI Placebo     NA 122     NA 129  0.0
##  NA   NA     130           TCA Placebo     NA  35     NA  34  0.0
##  NA   NA       1          SNRI Placebo     NA  78     NA  76  0.0
##  NA   NA      11          SSRI Placebo     NA  99     NA 101  0.0
##  NA   NA      53         NaSSa Placebo     NA 121     NA 129  0.0
##  NA   NA     130         NaSSa Placebo     NA  36     NA  34  0.0
##  allstudies
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
net2 <- netmeta(p2,
comb.fixed = FALSE, comb.random = TRUE, seq = trts, ref = "Placebo")
## Warning: Comparisons with missing TE / seTE or zero seTE not considered in
## network meta-analysis.
## Comparisons not considered in network meta-analysis:
##  studlab        treat1  treat2 TE seTE
##        1           TCA Placebo NA   NA
##        1           TCA    SNRI NA   NA
##        1          SNRI Placebo NA   NA
##       11          SSRI Placebo NA   NA
##       11           TCA Placebo NA   NA
##       11           TCA    SSRI NA   NA
##       14           TCA    SSRI NA   NA
##       18           TCA Placebo NA   NA
##       20           TCA    SSRI NA   NA
##       26          SSRI Placebo NA   NA
##       53         NaSSa Placebo NA   NA
##       53          SSRI   NaSSa NA   NA
##       53          SSRI Placebo NA   NA
##       56           TCA    SSRI NA   NA
##       73     Hypericum Placebo NA   NA
##       90           TCA    SSRI NA   NA
##       96           TCA    SSRI NA   NA
##      121 Low-dose SARI   NaSSa NA   NA
##      130         NaSSa Placebo NA   NA
##      130           TCA   NaSSa NA   NA
##      130           TCA Placebo NA   NA
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
# Partial order of treatment rankings (all five outcomes)
po <- netposet(netrank(net1, small.values = "bad"),
netrank(net2, small.values = "bad"),
outcomes = outcomes)
po
## Random effects model
##               Hypericum Low-dose SARI NaSSa NRI Placebo rMAO-A SNRI SSRI
## Hypericum             0             1     0   0       0      0    0    0
## Low-dose SARI         0             0     0   1       0      0    0    1
## NaSSa                 0             0     0   0       0      1    0    0
## NRI                   0             0     1   0       0      0    0    0
## Placebo               0             0     0   0       0      0    0    0
## rMAO-A                0             0     0   0       1      0    0    0
## SNRI                  0             0     0   0       0      0    0    0
## SSRI                  0             0     1   0       0      0    0    0
## TCA                   0             0     0   1       0      0    0    1
##               TCA
## Hypericum       1
## Low-dose SARI   0
## NaSSa           0
## NRI             0
## Placebo         0
## rMAO-A          0
## SNRI            1
## SSRI            0
## TCA             0
data(Linde2015)
# Transform data from arm-based format to contrast-based format 
#Outcome: early response
p1 <- pairwise(list(treatment1, treatment2, treatment3),
event = list(resp1, resp2, resp3),
n = list(n1, n2, n3),
studlab = id, data = Linde2015, sm = "OR")
## Warning: Comparisons with missing TE / seTE or zero seTE will not be
## considered in network meta-analysis.
## Comparisons will not be considered in network meta-analysis:
##  TE seTE studlab treat1  treat2 event1  n1 event2  n2 incr allstudies
##  NA   NA      14    TCA    SSRI     NA  10     NA  11    0      FALSE
##  NA   NA      18    TCA Placebo     NA  73     NA  73    0      FALSE
##  NA   NA      21    TCA  rMAO-A     NA  46     NA  98    0      FALSE
##  NA   NA      27   SSRI Placebo     NA  80     NA  81    0      FALSE
##  NA   NA      51    TCA  rMAO-A     NA  71     NA  71    0      FALSE
##  NA   NA     130    TCA   NaSSa     NA  35     NA  36    0      FALSE
##  NA   NA     131   SSRI    SNRI     NA 697     NA 688    0      FALSE
##  NA   NA     130    TCA Placebo     NA  35     NA  34    0      FALSE
##  NA   NA     130  NaSSa Placebo     NA  36     NA  34    0      FALSE
# Define order of treatments
trts <- c("TCA", "SSRI", "SNRI", "NRI",
"Low-dose SARI", "NaSSa", "rMAO-A", "Hypericum",
"Placebo")
# Conduct network meta-analysis
net1 <- netmeta(p1, comb.fixed = FALSE, comb.random = TRUE,
reference = "Placebo",
seq = trts)
## Warning: Comparisons with missing TE / seTE or zero seTE not considered in
## network meta-analysis.
## Comparisons not considered in network meta-analysis:
##  studlab treat1  treat2 TE seTE
##       14    TCA    SSRI NA   NA
##       18    TCA Placebo NA   NA
##       21    TCA  rMAO-A NA   NA
##       27   SSRI Placebo NA   NA
##       51    TCA  rMAO-A NA   NA
##      130  NaSSa Placebo NA   NA
##      130    TCA   NaSSa NA   NA
##      130    TCA Placebo NA   NA
##      131   SSRI    SNRI NA   NA
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
print(summary(net1), digits = 2)
## Number of studies: k = 59
## Number of treatments: n = 9
## Number of pairwise comparisons: m = 73
## Number of designs: d = 21
## 
## Random effects model
## 
## Treatment estimate (sm = 'OR', comparison: other treatments vs 'Placebo'):
##                 OR        95%-CI
## TCA           1.72  [1.42; 2.09]
## SSRI          1.68  [1.40; 2.01]
## SNRI          1.74  [1.25; 2.42]
## NRI           1.42  [0.84; 2.40]
## Low-dose SARI 1.78  [1.18; 2.70]
## NaSSa         1.14  [0.82; 1.60]
## rMAO-A        1.05  [0.69; 1.62]
## Hypericum     1.99  [1.58; 2.49]
## Placebo          .             .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.0352; I^2 = 26.9%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                     Q d.f.  p-value
## Total           79.37   58   0.0327
## Within designs  49.41   39   0.1226
## Between designs 29.95   19   0.0524
data(Senn2013)
nc1 <- netconnection(treat1, treat2, studlab, data = Senn2013)
nc1
## Number of studies: k = 26
## Number of treatments: n = 10
## Number of pairwise comparisons: m = 28
## Number of networks: 1
## 
## Distance matrix:
##      acar benf metf migl piog plac rosi sita sulf vild
## acar    .    2    1    2    2    1    2    2    1    2
## benf    2    .    2    2    2    1    2    2    3    2
## metf    1    2    .    2    1    1    1    2    1    2
## migl    2    2    2    .    2    1    2    2    3    2
## piog    2    2    1    2    .    1    1    2    2    2
## plac    1    1    1    1    1    .    1    1    2    1
## rosi    2    2    1    2    1    1    .    2    1    2
## sita    2    2    2    2    2    1    2    .    3    2
## sulf    1    3    1    3    2    2    1    3    .    3
## vild    2    2    2    2    2    1    2    2    3    .
# Extract number of (sub)networks
nc1$n.subnets
## [1] 1
# Extract distance matrix
nc1$D.matrix
##      acar benf metf migl piog plac rosi sita sulf vild
## acar    0    2    1    2    2    1    2    2    1    2
## benf    2    0    2    2    2    1    2    2    3    2
## metf    1    2    0    2    1    1    1    2    1    2
## migl    2    2    2    0    2    1    2    2    3    2
## piog    2    2    1    2    0    1    1    2    2    2
## plac    1    1    1    1    1    0    1    1    2    1
## rosi    2    2    1    2    1    1    0    2    1    2
## sita    2    2    2    2    2    1    2    0    3    2
## sulf    1    3    1    3    2    2    1    3    0    3
## vild    2    2    2    2    2    1    2    2    3    0
# Conduct network meta-analysis
net1 <- netmeta(TE, seTE, treat1, treat2, studlab, data = Senn2013)
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
net1
## Original data (with adjusted standard errors for multi-arm studies):
## 
##                    treat1 treat2    TE   seTE seTE.adj narms multiarm
## DeFronzo1995         metf   plac -1.90 0.1414   0.1414     2         
## Lewin2007            metf   plac -0.82 0.0992   0.0992     2         
## Willms1999           acar   metf  0.20 0.3579   0.3884     3        *
## Davidson2007         plac   rosi  1.34 0.1435   0.1435     2         
## Wolffenbuttel1999    plac   rosi  1.10 0.1141   0.1141     2         
## Kipnes2001           piog   plac -1.30 0.1268   0.1268     2         
## Kerenyi2004          plac   rosi  0.77 0.1078   0.1078     2         
## Hanefeld2004         metf   piog -0.16 0.0849   0.0849     2         
## Derosa2004           piog   rosi  0.10 0.1831   0.1831     2         
## Baksi2004            plac   rosi  1.30 0.1014   0.1014     2         
## Rosenstock2008       plac   rosi  1.09 0.2263   0.2263     2         
## Zhu2003              plac   rosi  1.50 0.1624   0.1624     2         
## Yang2003             metf   rosi  0.14 0.2239   0.2239     2         
## Vongthavaravat2002   rosi   sulf -1.20 0.1436   0.1436     2         
## Oyama2008            acar   sulf -0.40 0.1549   0.1549     2         
## Costa1997            acar   plac -0.80 0.1432   0.1432     2         
## Hermansen2007        plac   sita  0.57 0.1291   0.1291     2         
## Garber2008           plac   vild  0.70 0.1273   0.1273     2         
## Alex1998             metf   sulf -0.37 0.1184   0.1184     2         
## Johnston1994         migl   plac -0.74 0.1839   0.1839     2         
## Johnston1998a        migl   plac -1.41 0.2235   0.2235     2         
## Kim2007              metf   rosi  0.00 0.2339   0.2339     2         
## Johnston1998b        migl   plac -0.68 0.2828   0.2828     2         
## Gonzalez-Ortiz2004   metf   plac -0.40 0.4356   0.4356     2         
## Stucci1996           benf   plac -0.23 0.3467   0.3467     2         
## Moulin2006           benf   plac -1.01 0.1366   0.1366     2         
## Willms1999           metf   plac -1.20 0.3758   0.4125     3        *
## Willms1999           acar   plac -1.00 0.4669   0.8242     3        *
## 
## Number of treatment arms (by study):
##                    narms
## Alex1998               2
## Baksi2004              2
## Costa1997              2
## Davidson2007           2
## DeFronzo1995           2
## Derosa2004             2
## Garber2008             2
## Gonzalez-Ortiz2004     2
## Hanefeld2004           2
## Hermansen2007          2
## Johnston1994           2
## Johnston1998a          2
## Johnston1998b          2
## Kerenyi2004            2
## Kim2007                2
## Kipnes2001             2
## Lewin2007              2
## Moulin2006             2
## Oyama2008              2
## Rosenstock2008         2
## Stucci1996             2
## Vongthavaravat2002     2
## Willms1999             3
## Wolffenbuttel1999      2
## Yang2003               2
## Zhu2003                2
## 
## Results (fixed effect model):
## 
##                    treat1 treat2                      95%-CI     Q
## DeFronzo1995         metf   plac -1.1141  [-1.2309; -0.9973] 30.89
## Lewin2007            metf   plac -1.1141  [-1.2309; -0.9973]  8.79
## Willms1999           acar   metf  0.2867  [ 0.0622;  0.5113]  0.05
## Davidson2007         plac   rosi  1.2018  [ 1.1084;  1.2953]  0.93
## Wolffenbuttel1999    plac   rosi  1.2018  [ 1.1084;  1.2953]  0.80
## Kipnes2001           piog   plac -1.0664  [-1.2151; -0.9178]  3.39
## Kerenyi2004          plac   rosi  1.2018  [ 1.1084;  1.2953] 16.05
## Hanefeld2004         metf   piog -0.0477  [-0.1845;  0.0891]  1.75
## Derosa2004           piog   rosi  0.1354  [-0.0249;  0.2957]  0.04
## Baksi2004            plac   rosi  1.2018  [ 1.1084;  1.2953]  0.94
## Rosenstock2008       plac   rosi  1.2018  [ 1.1084;  1.2953]  0.24
## Zhu2003              plac   rosi  1.2018  [ 1.1084;  1.2953]  3.37
## Yang2003             metf   rosi  0.0877  [-0.0449;  0.2203]  0.05
## Vongthavaravat2002   rosi   sulf -0.7623  [-0.9427; -0.5820]  9.29
## Oyama2008            acar   sulf -0.3879  [-0.6095; -0.1662]  0.01
## Costa1997            acar   plac -0.8274  [-1.0401; -0.6147]  0.04
## Hermansen2007        plac   sita  0.5700  [ 0.3170;  0.8230]  0.00
## Garber2008           plac   vild  0.7000  [ 0.4505;  0.9495]  0.00
## Alex1998             metf   sulf -0.6746  [-0.8482; -0.5011]  6.62
## Johnston1994         migl   plac -0.9439  [-1.1927; -0.6952]  1.23
## Johnston1998a        migl   plac -0.9439  [-1.1927; -0.6952]  4.35
## Kim2007              metf   rosi  0.0877  [-0.0449;  0.2203]  0.14
## Johnston1998b        migl   plac -0.9439  [-1.1927; -0.6952]  0.87
## Gonzalez-Ortiz2004   metf   plac -1.1141  [-1.2309; -0.9973]  2.69
## Stucci1996           benf   plac -0.9052  [-1.1543; -0.6561]  3.79
## Moulin2006           benf   plac -0.9052  [-1.1543; -0.6561]  0.59
## Willms1999           metf   plac -1.1141  [-1.2309; -0.9973]  0.04
## Willms1999           acar   plac -0.8274  [-1.0401; -0.6147]  0.04
##                    leverage
## DeFronzo1995           0.18
## Lewin2007              0.36
## Willms1999             0.09
## Davidson2007           0.11
## Wolffenbuttel1999      0.17
## Kipnes2001             0.36
## Kerenyi2004            0.20
## Hanefeld2004           0.68
## Derosa2004             0.20
## Baksi2004              0.22
## Rosenstock2008         0.04
## Zhu2003                0.09
## Yang2003               0.09
## Vongthavaravat2002     0.41
## Oyama2008              0.53
## Costa1997              0.57
## Hermansen2007          1.00
## Garber2008             1.00
## Alex1998               0.56
## Johnston1994           0.48
## Johnston1998a          0.32
## Kim2007                0.08
## Johnston1998b          0.20
## Gonzalez-Ortiz2004     0.02
## Stucci1996             0.13
## Moulin2006             0.87
## Willms1999             0.02
## Willms1999             0.02
## 
## Number of studies: k = 26
## Number of treatments: n = 10
## Number of pairwise comparisons: m = 28
## Number of designs: d = 15
## 
## Fixed effect model
## 
## Treatment estimate (sm = ''):
##         acar    benf    metf    migl    piog    plac   rosi    sita
## acar       .  0.0778  0.2867  0.1166  0.2391 -0.8274 0.3745 -0.2574
## benf -0.0778       .  0.2089  0.0387  0.1612 -0.9052 0.2967 -0.3352
## metf -0.2867 -0.2089       . -0.1702 -0.0477 -1.1141 0.0877 -0.5441
## migl -0.1166 -0.0387  0.1702       .  0.1225 -0.9439 0.2579 -0.3739
## piog -0.2391 -0.1612  0.0477 -0.1225       . -1.0664 0.1354 -0.4964
## plac  0.8274  0.9052  1.1141  0.9439  1.0664       . 1.2018  0.5700
## rosi -0.3745 -0.2967 -0.0877 -0.2579 -0.1354 -1.2018      . -0.6318
## sita  0.2574  0.3352  0.5441  0.3739  0.4964 -0.5700 0.6318       .
## sulf  0.3879  0.4657  0.6746  0.5044  0.6269 -0.4395 0.7623  0.1305
## vild  0.1274  0.2052  0.4141  0.2439  0.3664 -0.7000 0.5018 -0.1300
##         sulf    vild
## acar -0.3879 -0.1274
## benf -0.4657 -0.2052
## metf -0.6746 -0.4141
## migl -0.5044 -0.2439
## piog -0.6269 -0.3664
## plac  0.4395  0.7000
## rosi -0.7623 -0.5018
## sita -0.1305  0.1300
## sulf       .  0.2605
## vild -0.2605       .
## 
## Lower 95%-confidence limit:
##         acar    benf    metf    migl    piog    plac    rosi    sita
## acar       . -0.2497  0.0622 -0.2107 -0.0094 -1.0401  0.1506 -0.5879
## benf -0.4054       . -0.0662 -0.3133 -0.1288 -1.1543  0.0306 -0.6903
## metf -0.5113 -0.4841       . -0.4450 -0.1845 -1.2309 -0.0449 -0.8228
## migl -0.4438 -0.3908 -0.1046       . -0.1673 -1.1927 -0.0078 -0.7287
## piog -0.4876 -0.4513 -0.0891 -0.4123       . -1.2151 -0.0249 -0.7899
## plac  0.6147  0.6561  0.9973  0.6952  0.9178       .  1.1084  0.3170
## rosi -0.5983 -0.5627 -0.2203 -0.5236 -0.2957 -1.2953       . -0.9016
## sita -0.0732 -0.0199  0.2654  0.0191  0.2030 -0.8230  0.3621       .
## sulf  0.1662  0.1588  0.5011  0.1978  0.4178 -0.6188  0.5820 -0.1796
## vild -0.2005 -0.1474  0.1386 -0.1084  0.0760 -0.9495  0.2354 -0.4854
##         sulf    vild
## acar -0.6095 -0.4552
## benf -0.7726 -0.5577
## metf -0.8482 -0.6896
## migl -0.8111 -0.5962
## piog -0.8361 -0.6569
## plac  0.2602  0.4505
## rosi -0.9427 -0.7683
## sita -0.4406 -0.2254
## sulf       . -0.0467
## vild -0.5677       .
## 
## Upper 95%-confidence limit:
##         acar    benf   metf   migl   piog    plac   rosi    sita    sulf
## acar       .  0.4054 0.5113 0.4438 0.4876 -0.6147 0.5983  0.0732 -0.1662
## benf  0.2497       . 0.4841 0.3908 0.4513 -0.6561 0.5627  0.0199 -0.1588
## metf -0.0622  0.0662      . 0.1046 0.0891 -0.9973 0.2203 -0.2654 -0.5011
## migl  0.2107  0.3133 0.4450      . 0.4123 -0.6952 0.5236 -0.0191 -0.1978
## piog  0.0094  0.1288 0.1845 0.1673      . -0.9178 0.2957 -0.2030 -0.4178
## plac  1.0401  1.1543 1.2309 1.1927 1.2151       . 1.2953  0.8230  0.6188
## rosi -0.1506 -0.0306 0.0449 0.0078 0.0249 -1.1084      . -0.3621 -0.5820
## sita  0.5879  0.6903 0.8228 0.7287 0.7899 -0.3170 0.9016       .  0.1796
## sulf  0.6095  0.7726 0.8482 0.8111 0.8361 -0.2602 0.9427  0.4406       .
## vild  0.4552  0.5577 0.6896 0.5962 0.6569 -0.4505 0.7683  0.2254  0.0467
##         vild
## acar  0.2005
## benf  0.1474
## metf -0.1386
## migl  0.1084
## piog -0.0760
## plac  0.9495
## rosi -0.2354
## sita  0.4854
## sulf  0.5677
## vild       .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.1087; I^2 = 81.4%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                     Q d.f.  p-value
## Total           96.99   18 < 0.0001
## Within designs  74.46   11 < 0.0001
## Between designs 22.53    7   0.0021
data(Senn2013)
net1 <- netmeta(TE, seTE, treat1, treat2, studlab,
data = Senn2013, sm = "MD")
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
netdistance(net1)
##      acar benf metf migl piog plac rosi sita sulf vild
## acar    0    2    1    2    2    1    2    2    1    2
## benf    2    0    2    2    2    1    2    2    3    2
## metf    1    2    0    2    1    1    1    2    1    2
## migl    2    2    2    0    2    1    2    2    3    2
## piog    2    2    1    2    0    1    1    2    2    2
## plac    1    1    1    1    1    0    1    1    2    1
## rosi    2    2    1    2    1    1    0    2    1    2
## sita    2    2    2    2    2    1    2    0    3    2
## sulf    1    3    1    3    2    2    1    3    0    3
## vild    2    2    2    2    2    1    2    2    3    0
netdistance(net1$A.matrix)
##      acar benf metf migl piog plac rosi sita sulf vild
## acar    0    2    1    2    2    1    2    2    1    2
## benf    2    0    2    2    2    1    2    2    3    2
## metf    1    2    0    2    1    1    1    2    1    2
## migl    2    2    2    0    2    1    2    2    3    2
## piog    2    2    1    2    0    1    1    2    2    2
## plac    1    1    1    1    1    0    1    1    2    1
## rosi    2    2    1    2    1    1    0    2    1    2
## sita    2    2    2    2    2    1    2    0    3    2
## sulf    1    3    1    3    2    2    1    3    0    3
## vild    2    2    2    2    2    1    2    2    3    0
data(Senn2013)
# Generation of an object of class 'netmeta' with reference treatment 'plac'
net1 <- netmeta(TE, seTE, treat1, treat2, studlab,
data = Senn2013, sm = "MD", reference = "plac")
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
# Network graph with default settings
netgraph(net1)

# Network graph with specified order of the treatments and one highlighted comparison
trts <- c("plac", "benf", "migl", "acar", "sulf",
"metf", "rosi", "piog", "sita", "vild")
netgraph(net1, highlight = "rosi:plac", seq = trts)

# Same network graph using argument 'seq' in netmeta function
net2 <- netmeta(TE, seTE, treat1, treat2, studlab,
data = Senn2013, sm = "MD", reference = "plac",
seq = trts)
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
netgraph(net2, highlight = "rosi:plac")

# Network graph optimized, starting from a circle, with multi-arm
# study colored
netgraph(net1, start = "circle", iterate = TRUE, col.multiarm = "purple")

# Network graph optimized, starting from a circle, with multi-arm
# study colored and all intermediate iteration steps visible
netgraph(net1, start = "circle", iterate = TRUE, col.multiarm = "purple",
allfigures = TRUE)

# Network graph optimized, starting from Laplacian eigenvectors, with
# multi-arm study colored
netgraph(net1, start = "eigen", col.multiarm = "purple")

# Network graph optimized, starting from different Laplacian
# eigenvectors, with multi-arm study colored
netgraph(net1, start = "prcomp", col.multiarm = "purple")

# Network graph optimized, starting from random initial layout, with
# multi-arm study colored
netgraph(net1, start = "random", col.multiarm = "purple")

# Network graph without plastic look and one highlighted comparison
netgraph(net1, plastic = FALSE, highlight = "rosi:plac")

# Network graph without plastic look and comparisons with same thickness
netgraph(net1, plastic = FALSE, thickness = FALSE)

# Network graph with changed labels and specified order of the treatments
netgraph(net1, seq = c(1, 3, 5, 2, 9, 4, 7, 6, 8, 10),
labels = LETTERS[1:10])

data(Senn2013)

# Generation of an object of class 'netmeta' with reference treatment 'plac', i.e. placebo
net1 <- netmeta(TE, seTE, treat1, treat2, studlab,data=Senn2013, sm="MD", reference="plac")
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
# Generate a net heat plot based on a fixed effects model
netheat(net1)

# Generate a net heat plot based on a random effects model
netheat(net1, random=TRUE)

# Network meta-analysis of count mortality statistics
data(Woods2010)
p0 <- pairwise(treatment, event = r, n = N,
studlab = author, data = Woods2010, sm = "OR")
net0 <- netmeta(p0)
cilayout(bracket = "(", separator = " - ")
oldopts <- options(width = 100)

# League table for fixed effect model
netleague(net0, digits = 2)
## League table (fixed effect model):
##                                                                                 
##          Fluticasone 0.55 (0.16 -  1.85) 1.31 (0.32 -  5.25) 1.92 (0.35 - 10.57)
##  1.81 (0.54 -  6.10)             Placebo 2.37 (0.80 -  7.04) 3.49 (0.73 - 16.60)
##  0.77 (0.19 -  3.08) 0.42 (0.14 -  1.26)          Salmeterol 1.47 (0.27 -  8.09)
##  0.52 (0.09 -  2.85) 0.29 (0.06 -  1.36) 0.68 (0.12 -  3.72)                 SFC
# League table for fixed effect and random effects model
netleague(net0, comb.random = TRUE, digits = 2)
## League table (fixed effect model):
##                                                                                 
##          Fluticasone 0.55 (0.16 -  1.85) 1.31 (0.32 -  5.25) 1.92 (0.35 - 10.57)
##  1.81 (0.54 -  6.10)             Placebo 2.37 (0.80 -  7.04) 3.49 (0.73 - 16.60)
##  0.77 (0.19 -  3.08) 0.42 (0.14 -  1.26)          Salmeterol 1.47 (0.27 -  8.09)
##  0.52 (0.09 -  2.85) 0.29 (0.06 -  1.36) 0.68 (0.12 -  3.72)                 SFC
## 
## League table (random effects model):
##                                                                                 
##          Fluticasone 0.55 (0.16 -  1.85) 1.31 (0.32 -  5.25) 1.92 (0.35 - 10.57)
##  1.81 (0.54 -  6.10)             Placebo 2.37 (0.80 -  7.04) 3.49 (0.73 - 16.60)
##  0.77 (0.19 -  3.08) 0.42 (0.14 -  1.26)          Salmeterol 1.47 (0.27 -  8.09)
##  0.52 (0.09 -  2.85) 0.29 (0.06 -  1.36) 0.68 (0.12 -  3.72)                 SFC
# Change order of treatments according to treatment ranking
netleague(net0, comb.random = TRUE, digits = 2,
seq = netrank(net0))
## League table (fixed effect model):
##                                                                                 
##                  SFC 0.68 (0.12 -  3.72) 0.52 (0.09 -  2.85) 0.29 (0.06 -  1.36)
##  1.47 (0.27 -  8.09)          Salmeterol 0.77 (0.19 -  3.08) 0.42 (0.14 -  1.26)
##  1.92 (0.35 - 10.57) 1.31 (0.32 -  5.25)         Fluticasone 0.55 (0.16 -  1.85)
##  3.49 (0.73 - 16.60) 2.37 (0.80 -  7.04) 1.81 (0.54 -  6.10)             Placebo
## 
## League table (random effects model):
##                                                                                 
##                  SFC 0.68 (0.12 -  3.72) 0.52 (0.09 -  2.85) 0.29 (0.06 -  1.36)
##  1.47 (0.27 -  8.09)          Salmeterol 0.77 (0.19 -  3.08) 0.42 (0.14 -  1.26)
##  1.92 (0.35 - 10.57) 1.31 (0.32 -  5.25)         Fluticasone 0.55 (0.16 -  1.85)
##  3.49 (0.73 - 16.60) 2.37 (0.80 -  7.04) 1.81 (0.54 -  6.10)             Placebo
print(netrank(net0), comb.random = TRUE)
##             P-score (fixed) P-score (random)
## SFC                  0.7963           0.7963
## Salmeterol           0.6377           0.6377
## Fluticasone          0.4706           0.4706
## Placebo              0.0954           0.0954
# Use depression dataset
data(Linde2015)
cilayout()

# Define order of treatments
trts <- c("TCA", "SSRI", "SNRI", "NRI",
"Low-dose SARI", "NaSSa", "rMAO-A", "Hypericum",
"Placebo")

# Outcome labels
outcomes <- c("Early response", "Early remission")

# (1) Early response
p1 <- pairwise(treat = list(treatment1, treatment2, treatment3),
event = list(resp1, resp2, resp3),
n = list(n1, n2, n3),
studlab = id, data = Linde2015, sm = "OR")
## Warning: Comparisons with missing TE / seTE or zero seTE will not be
## considered in network meta-analysis.
## Comparisons will not be considered in network meta-analysis:
##  TE seTE studlab treat1  treat2 event1  n1 event2  n2 incr allstudies
##  NA   NA      14    TCA    SSRI     NA  10     NA  11    0      FALSE
##  NA   NA      18    TCA Placebo     NA  73     NA  73    0      FALSE
##  NA   NA      21    TCA  rMAO-A     NA  46     NA  98    0      FALSE
##  NA   NA      27   SSRI Placebo     NA  80     NA  81    0      FALSE
##  NA   NA      51    TCA  rMAO-A     NA  71     NA  71    0      FALSE
##  NA   NA     130    TCA   NaSSa     NA  35     NA  36    0      FALSE
##  NA   NA     131   SSRI    SNRI     NA 697     NA 688    0      FALSE
##  NA   NA     130    TCA Placebo     NA  35     NA  34    0      FALSE
##  NA   NA     130  NaSSa Placebo     NA  36     NA  34    0      FALSE
net1 <- netmeta(p1,
comb.fixed = FALSE, comb.random = TRUE,
seq = trts, ref = "Placebo")
## Warning: Comparisons with missing TE / seTE or zero seTE not considered in
## network meta-analysis.
## Comparisons not considered in network meta-analysis:
##  studlab treat1  treat2 TE seTE
##       14    TCA    SSRI NA   NA
##       18    TCA Placebo NA   NA
##       21    TCA  rMAO-A NA   NA
##       27   SSRI Placebo NA   NA
##       51    TCA  rMAO-A NA   NA
##      130  NaSSa Placebo NA   NA
##      130    TCA   NaSSa NA   NA
##      130    TCA Placebo NA   NA
##      131   SSRI    SNRI NA   NA
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
# (2) Early remission
p2 <- pairwise(treat = list(treatment1, treatment2, treatment3),
event = list(remi1, remi2, remi3),
n = list(n1, n2, n3),
studlab = id, data = Linde2015, sm = "OR")
## Warning: Comparisons with missing TE / seTE or zero seTE will not be
## considered in network meta-analysis.
## Comparisons will not be considered in network meta-analysis:
##  TE seTE studlab        treat1  treat2 event1  n1 event2  n2 incr allstudies
##  NA   NA       1           TCA    SNRI     NA  75     NA  78  0.0      FALSE
##  NA   NA      11           TCA    SSRI     NA 108     NA  99  0.0      FALSE
##  NA   NA      14           TCA    SSRI     NA  10     NA  11  0.0      FALSE
##  NA   NA      18           TCA Placebo     NA  73     NA  73  0.0      FALSE
##  NA   NA      20           TCA    SSRI     NA  55     NA  51  0.0      FALSE
##  NA   NA      26          SSRI Placebo     NA 314     NA 154  0.0      FALSE
##  NA   NA      53          SSRI   NaSSa     NA 122     NA 121  0.0      FALSE
##  NA   NA      56           TCA    SSRI     NA  92     NA 380  0.0      FALSE
##  NA   NA      73     Hypericum Placebo     NA  55     NA  57  0.0      FALSE
##  NA   NA      90           TCA    SSRI     NA  42     NA  42  0.0      FALSE
##  NA   NA      96           TCA    SSRI      0  30      0  29  0.5      FALSE
##  NA   NA     121 Low-dose SARI   NaSSa     NA  43     NA  40  0.0      FALSE
##  NA   NA     130           TCA   NaSSa     NA  35     NA  36  0.0      FALSE
##  NA   NA       1           TCA Placebo     NA  75     NA  76  0.0      FALSE
##  NA   NA      11           TCA Placebo     NA 108     NA 101  0.0      FALSE
##  NA   NA      53          SSRI Placebo     NA 122     NA 129  0.0      FALSE
##  NA   NA     130           TCA Placebo     NA  35     NA  34  0.0      FALSE
##  NA   NA       1          SNRI Placebo     NA  78     NA  76  0.0      FALSE
##  NA   NA      11          SSRI Placebo     NA  99     NA 101  0.0      FALSE
##  NA   NA      53         NaSSa Placebo     NA 121     NA 129  0.0      FALSE
##  NA   NA     130         NaSSa Placebo     NA  36     NA  34  0.0      FALSE
net2 <- netmeta(p2,
comb.fixed = FALSE, comb.random = TRUE,
seq = trts, ref = "Placebo")
## Warning: Comparisons with missing TE / seTE or zero seTE not considered in
## network meta-analysis.
## Comparisons not considered in network meta-analysis:
##  studlab        treat1  treat2 TE seTE
##        1           TCA Placebo NA   NA
##        1           TCA    SNRI NA   NA
##        1          SNRI Placebo NA   NA
##       11          SSRI Placebo NA   NA
##       11           TCA Placebo NA   NA
##       11           TCA    SSRI NA   NA
##       14           TCA    SSRI NA   NA
##       18           TCA Placebo NA   NA
##       20           TCA    SSRI NA   NA
##       26          SSRI Placebo NA   NA
##       53         NaSSa Placebo NA   NA
##       53          SSRI   NaSSa NA   NA
##       53          SSRI Placebo NA   NA
##       56           TCA    SSRI NA   NA
##       73     Hypericum Placebo NA   NA
##       90           TCA    SSRI NA   NA
##       96           TCA    SSRI NA   NA
##      121 Low-dose SARI   NaSSa NA   NA
##      130         NaSSa Placebo NA   NA
##      130           TCA   NaSSa NA   NA
##      130           TCA Placebo NA   NA
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
options(width = 200)
netleague(net1, digits = 2)
## League table (random effects model):
##                                                                                                                                                                   
##                TCA 1.03 [0.89; 1.18] 0.99 [0.73; 1.36] 1.22 [0.73; 2.04] 0.97 [0.66; 1.42] 1.51 [1.10; 2.08] 1.64 [1.11; 2.42] 0.87 [0.69; 1.10] 1.72 [1.42; 2.09]
##  0.97 [0.84; 1.12]              SSRI 0.97 [0.72; 1.30] 1.18 [0.72; 1.94] 0.94 [0.63; 1.40] 1.47 [1.07; 2.02] 1.59 [1.06; 2.40] 0.84 [0.68; 1.05] 1.68 [1.40; 2.01]
##  1.01 [0.74; 1.38] 1.04 [0.77; 1.39]              SNRI 1.23 [0.69; 2.18] 0.98 [0.60; 1.59] 1.52 [0.99; 2.34] 1.65 [1.01; 2.71] 0.88 [0.61; 1.25] 1.74 [1.25; 2.42]
##  0.82 [0.49; 1.37] 0.84 [0.52; 1.38] 0.81 [0.46; 1.45]               NRI 0.79 [0.42; 1.50] 1.24 [0.69; 2.24] 1.35 [0.71; 2.56] 0.71 [0.42; 1.22] 1.42 [0.84; 2.40]
##  1.03 [0.70; 1.52] 1.06 [0.71; 1.58] 1.03 [0.63; 1.67] 1.26 [0.67; 2.37]     Low-dose SARI 1.56 [1.06; 2.30] 1.69 [1.00; 2.88] 0.90 [0.58; 1.40] 1.78 [1.18; 2.70]
##  0.66 [0.48; 0.91] 0.68 [0.50; 0.93] 0.66 [0.43; 1.01] 0.81 [0.45; 1.45] 0.64 [0.43; 0.94]             NaSSa 1.08 [0.68; 1.72] 0.57 [0.40; 0.83] 1.14 [0.82; 1.60]
##  0.61 [0.41; 0.90] 0.63 [0.42; 0.95] 0.61 [0.37; 0.99] 0.74 [0.39; 1.41] 0.59 [0.35; 1.00] 0.92 [0.58; 1.47]            rMAO-A 0.53 [0.34; 0.83] 1.05 [0.69; 1.62]
##  1.15 [0.91; 1.46] 1.18 [0.95; 1.47] 1.14 [0.80; 1.64] 1.40 [0.82; 2.41] 1.11 [0.72; 1.73] 1.74 [1.20; 2.52] 1.89 [1.20; 2.96]         Hypericum 1.99 [1.58; 2.49]
##  0.58 [0.48; 0.70] 0.60 [0.50; 0.71] 0.58 [0.41; 0.80] 0.71 [0.42; 1.19] 0.56 [0.37; 0.85] 0.88 [0.63; 1.23] 0.95 [0.62; 1.46] 0.50 [0.40; 0.63]           Placebo
netleague(net1, digits = 2, ci = FALSE)
## League table (random effects model):
##                                                                  
##   TCA 1.03 0.99 1.22          0.97  1.51   1.64      0.87    1.72
##  0.97 SSRI 0.97 1.18          0.94  1.47   1.59      0.84    1.68
##  1.01 1.04 SNRI 1.23          0.98  1.52   1.65      0.88    1.74
##  0.82 0.84 0.81  NRI          0.79  1.24   1.35      0.71    1.42
##  1.03 1.06 1.03 1.26 Low-dose SARI  1.56   1.69      0.90    1.78
##  0.66 0.68 0.66 0.81          0.64 NaSSa   1.08      0.57    1.14
##  0.61 0.63 0.61 0.74          0.59  0.92 rMAO-A      0.53    1.05
##  1.15 1.18 1.14 1.40          1.11  1.74   1.89 Hypericum    1.99
##  0.58 0.60 0.58 0.71          0.56  0.88   0.95      0.50 Placebo
netleague(net2, digits = 2, ci = FALSE)
## League table (random effects model):
##                                                                  
##   TCA 1.05 0.93 1.05          1.01  1.22   1.22      0.95    1.92
##  0.95 SSRI 0.89 1.00          0.96  1.16   1.16      0.90    1.83
##  1.07 1.13 SNRI 1.13          1.09  1.31   1.31      1.02    2.07
##  0.95 1.00 0.89  NRI          0.96  1.16   1.16      0.90    1.83
##  0.99 1.04 0.92 1.04 Low-dose SARI  1.21   1.21      0.94    1.91
##  0.82 0.86 0.76 0.86          0.83 NaSSa   1.00      0.77    1.58
##  0.82 0.86 0.76 0.86          0.83  1.00 rMAO-A      0.77    1.57
##  1.06 1.11 0.98 1.11          1.07  1.29   1.29 Hypericum    2.04
##  0.52 0.55 0.48 0.55          0.52  0.63   0.64      0.49 Placebo
netleague(net1, net2, digits = 2, ci = FALSE)
## League table (random effects model):
##                                                                  
##   TCA 1.05 0.93 1.05          1.01  1.22   1.22      0.95    1.92
##  0.97 SSRI 0.89 1.00          0.96  1.16   1.16      0.90    1.83
##  1.01 1.04 SNRI 1.13          1.09  1.31   1.31      1.02    2.07
##  0.82 0.84 0.81  NRI          0.96  1.16   1.16      0.90    1.83
##  1.03 1.06 1.03 1.26 Low-dose SARI  1.21   1.21      0.94    1.91
##  0.66 0.68 0.66 0.81          0.64 NaSSa   1.00      0.77    1.58
##  0.61 0.63 0.61 0.74          0.59  0.92 rMAO-A      0.77    1.57
##  1.15 1.18 1.14 1.40          1.11  1.74   1.89 Hypericum    2.04
##  0.58 0.60 0.58 0.71          0.56  0.88   0.95      0.50 Placebo
netleague(net1, net2, seq = netrank(net1, small = "bad"), ci = FALSE)
## League table (random effects model):
##                                                                           
##  Hypericum        1.0682 0.9843 1.0579 1.1117 1.1119 1.2919 1.2936  2.0362
##     0.8975 Low-dose SARI 0.9214 0.9904 1.0408 1.0409 1.2094 1.2110  1.9062
##     0.8751        0.9750   SNRI 1.0749 1.1295 1.1297 1.3126 1.3143  2.0688
##     0.8680        0.9671 0.9919    TCA 1.0509 1.0510 1.2211 1.2228  1.9247
##     0.8445        0.9409 0.9650 0.9729   SSRI 1.0001 1.1620 1.1636  1.8315
##     0.7132        0.7946 0.8150 0.8217 0.8445    NRI 1.1619 1.1634  1.8313
##     0.5743        0.6398 0.6562 0.6616 0.6800 0.8052  NaSSa 1.0013  1.5761
##     0.5302        0.5908 0.6059 0.6109 0.6279 0.7435 0.9233 rMAO-A  1.5740
##     0.5033        0.5607 0.5751 0.5798 0.5960 0.7057 0.8764 0.9492 Placebo
netleague(net1, net2, seq = netrank(net2, small = "bad"), ci = FALSE)
## League table (random effects model):
##                                                                           
##    SNRI    1.0160 1.0749        1.0853 1.1297 1.1295 1.3126 1.3143  2.0688
##  1.1428 Hypericum 1.0579        1.0682 1.1119 1.1117 1.2919 1.2936  2.0362
##  0.9919    0.8680    TCA        1.0097 1.0510 1.0509 1.2211 1.2228  1.9247
##  1.0256    0.8975 1.0340 Low-dose SARI 1.0409 1.0408 1.2094 1.2110  1.9062
##  0.8150    0.7132 0.8217        0.7946    NRI 0.9999 1.1619 1.1634  1.8313
##  0.9650    0.8445 0.9729        0.9409 1.1841   SSRI 1.1620 1.1636  1.8315
##  0.6562    0.5743 0.6616        0.6398 0.8052 0.6800  NaSSa 1.0013  1.5761
##  0.6059    0.5302 0.6109        0.5908 0.7435 0.6279 0.9233 rMAO-A  1.5740
##  0.5751    0.5033 0.5798        0.5607 0.7057 0.5960 0.8764 0.9492 Placebo
print(netrank(net1, small = "bad"), comb.random = TRUE)
##               P-score
## Hypericum      0.8939
## Low-dose SARI  0.7201
## SNRI           0.6892
## TCA            0.6802
## SSRI           0.6164
## NRI            0.4445
## NaSSa          0.2128
## rMAO-A         0.1521
## Placebo        0.0908
print(netrank(net2, small = "bad"), comb.random = TRUE)
##               P-score
## SNRI           0.7681
## Hypericum      0.7453
## TCA            0.6481
## Low-dose SARI  0.6155
## NRI            0.5513
## SSRI           0.5111
## NaSSa          0.3346
## rMAO-A         0.3196
## Placebo        0.0063
options(oldopts)

# Generate a partial order of treatment rankings
np <- netposet(net1, net2, outcomes = outcomes, small.values = rep("bad",2))
plot(np)

data(Senn2013)

# Generation of an object of class 'netmeta' with
# reference treatment 'plac', i.e. placebo based
# on a fixed effects model
net1 <- netmeta(TE, seTE, treat1, treat2, studlab,
data=Senn2013, sm="MD", reference="plac")
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
# Calculate measures based on a fixed effects model
nm1 <- netmeasures(net1)
# Plot of minimal parallelism versus mean path length
plot(nm1$meanpath, nm1$minpar, pch="",
xlab="Mean path length", ylab="Minimal parallelism")
text(nm1$meanpath, nm1$minpar, names(nm1$meanpath), cex=0.8)

# Generation of an object of class 'netmeta' with
# reference treatment 'plac' based on a random
# effects model
net2 <- netmeta(TE, seTE, treat1, treat2, studlab,
data=Senn2013, sm="MD", reference="plac", comb.random=TRUE)
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
# Calculate measures based on a random effects model
nm2 <- netmeasures(net2)
nm2
## $proportion
## acar:benf acar:metf acar:migl acar:piog acar:plac acar:rosi acar:sita 
##    0.0000    0.2812    0.0000    0.0000    0.6526    0.0000    0.0000 
## acar:sulf acar:vild benf:metf benf:migl benf:piog benf:plac benf:rosi 
##    0.5311    0.0000    0.0000    0.0000    0.0000    1.0000    0.0000 
## benf:sita benf:sulf benf:vild metf:migl metf:piog metf:plac metf:rosi 
##    0.0000    0.0000    0.0000    0.0000    0.4389    0.5606    0.3387 
## metf:sita metf:sulf metf:vild migl:piog migl:plac migl:rosi migl:sita 
##    0.0000    0.4509    0.0000    0.0000    1.0000    0.0000    0.0000 
## migl:sulf migl:vild piog:plac piog:rosi piog:sita piog:sulf piog:vild 
##    0.0000    0.0000    0.3866    0.3528    0.0000    0.0000    0.0000 
## plac:rosi plac:sita plac:sulf plac:vild rosi:sita rosi:sulf rosi:vild 
##    0.7565    1.0000    0.0000    1.0000    0.0000    0.4348    0.0000 
## sita:sulf sita:vild sulf:vild 
##    0.0000    0.0000    0.0000 
## 
## $meanpath
## acar:benf acar:metf acar:migl acar:piog acar:plac acar:rosi acar:sita 
##    2.7810    2.0082    2.7810    2.4711    1.7810    2.2137    2.7810 
## acar:sulf acar:vild benf:metf benf:migl benf:piog benf:plac benf:rosi 
##    1.8193    2.7810    2.5658    2.0000    2.7181    1.0000    2.3064 
## benf:sita benf:sulf benf:vild metf:migl metf:piog metf:plac metf:rosi 
##    2.0000    3.1121    2.0000    2.5658    1.6909    1.5658    1.7237 
## metf:sita metf:sulf metf:vild migl:piog migl:plac migl:rosi migl:sita 
##    2.5658    1.8531    2.5658    2.7181    1.0000    2.3064    2.0000 
## migl:sulf migl:vild piog:plac piog:rosi piog:sita piog:sulf piog:vild 
##    3.1121    2.0000    1.7181    1.8133    2.7181    2.3823    2.7181 
## plac:rosi plac:sita plac:sulf plac:vild rosi:sita rosi:sulf rosi:vild 
##    1.3064    1.0000    2.1121    1.0000    2.3064    1.9788    2.3064 
## sita:sulf sita:vild sulf:vild 
##    3.1121    2.0000    3.1121 
## 
## $minpar
## acar:benf acar:metf acar:migl acar:piog acar:plac acar:rosi acar:sita 
##    1.0000    2.5037    1.0000    2.3119    2.1385    1.8162    1.0000 
## acar:sulf acar:vild benf:metf benf:migl benf:piog benf:plac benf:rosi 
##    1.8827    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000 
## benf:sita benf:sulf benf:vild metf:migl metf:piog metf:plac metf:rosi 
##    1.0000    1.0000    1.0000    1.0000    2.2786    2.1489    2.1790 
## metf:sita metf:sulf metf:vild migl:piog migl:plac migl:rosi migl:sita 
##    1.0000    2.2177    1.0000    1.0000    1.0000    1.0000    1.0000 
## migl:sulf migl:vild piog:plac piog:rosi piog:sita piog:sulf piog:vild 
##    1.0000    1.0000    2.5869    2.3621    1.0000    2.5649    1.0000 
## plac:rosi plac:sita plac:sulf plac:vild rosi:sita rosi:sulf rosi:vild 
##    1.3219    1.0000    2.3831    1.0000    1.0000    2.2998    1.0000 
## sita:sulf sita:vild sulf:vild 
##    1.0000    1.0000    1.0000 
## 
## $minpar.study
## acar:benf acar:metf acar:migl acar:piog acar:plac acar:rosi acar:sita 
##    1.5564    2.5037    2.1385    2.3119    2.1385    2.3083    1.0000 
## acar:sulf acar:vild benf:metf benf:migl benf:piog benf:plac benf:rosi 
##    1.8827    1.0000    1.5564    1.5564    1.5564    1.5564    1.5564 
## benf:sita benf:sulf benf:vild metf:migl metf:piog metf:plac metf:rosi 
##    1.0000    1.5564    1.0000    2.6537    2.2786    4.9818    5.8226 
## metf:sita metf:sulf metf:vild migl:piog migl:plac migl:rosi migl:sita 
##    1.0000    2.2177    1.0000    2.5869    2.6537    2.6537    1.0000 
## migl:sulf migl:vild piog:plac piog:rosi piog:sita piog:sulf piog:vild 
##    2.6414    1.0000    2.5869    2.8342    1.0000    2.5649    1.0000 
## plac:rosi plac:sita plac:sulf plac:vild rosi:sita rosi:sulf rosi:vild 
##    7.2857    1.0000    2.6414    1.0000    1.0000    2.2998    1.0000 
## sita:sulf sita:vild sulf:vild 
##    1.0000    1.0000    1.0000 
## 
## $H.tilde
##           acar:metf:plac    acar:plac    acar:sulf    benf:plac
## acar:benf   2.577526e-01 4.676222e-01 2.746251e-01 1.000000e+00
## acar:metf   2.926239e-01 3.994096e-01 3.079666e-01 3.391488e-16
## acar:migl   2.577526e-01 4.676222e-01 2.746251e-01 1.695744e-16
## acar:piog   2.703522e-01 4.325446e-01 2.971032e-01 2.543616e-16
## acar:plac   2.577526e-01 4.676222e-01 2.746251e-01 2.543616e-16
## acar:rosi   2.573856e-01 4.332202e-01 3.093942e-01 1.695744e-16
## acar:sita   2.577526e-01 4.676222e-01 2.746251e-01 1.695744e-16
## acar:sulf   1.868165e-01 2.820373e-01 5.311462e-01 8.478720e-17
## acar:vild   2.577526e-01 4.676222e-01 2.746251e-01 8.478720e-17
## benf:metf   1.189217e-01 6.821266e-02 3.334144e-02 1.000000e+00
## benf:migl   0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00
## benf:piog   5.090128e-02 3.507765e-02 2.247806e-02 1.000000e+00
## benf:plac   3.112961e-17 5.369698e-17 0.000000e+00 1.000000e+00
## benf:rosi   2.582341e-02 3.440204e-02 3.476910e-02 1.000000e+00
## benf:sita   8.589556e-17 0.000000e+00 5.228577e-17 1.000000e+00
## benf:sulf   7.568026e-02 1.855849e-01 2.565210e-01 1.000000e+00
## benf:vild   3.112961e-17 5.369698e-17 5.228577e-17 1.000000e+00
## metf:migl   1.189217e-01 6.821266e-02 3.334144e-02 1.695744e-16
## metf:piog   6.802043e-02 3.313501e-02 1.086339e-02 8.478720e-17
## metf:plac   1.189217e-01 6.821266e-02 3.334144e-02 8.478720e-17
## metf:rosi   9.346535e-02 3.381062e-02 1.427659e-03 1.695744e-16
## metf:sita   1.189217e-01 6.821266e-02 3.334144e-02 1.695744e-16
## metf:sulf   1.141776e-01 1.173722e-01 2.231796e-01 2.543616e-16
## metf:vild   1.189217e-01 6.821266e-02 3.334144e-02 2.543616e-16
## migl:piog   5.090128e-02 3.507765e-02 2.247806e-02 8.478720e-17
## migl:plac   3.112961e-17 5.369698e-17 0.000000e+00 8.478720e-17
## migl:rosi   2.582341e-02 3.440204e-02 3.476910e-02 0.000000e+00
## migl:sita   8.589556e-17 0.000000e+00 5.228577e-17 0.000000e+00
## migl:sulf   7.568026e-02 1.855849e-01 2.565210e-01 8.478720e-17
## migl:vild   3.112961e-17 5.369698e-17 5.228577e-17 8.478720e-17
## piog:plac   5.090128e-02 3.507765e-02 2.247806e-02 0.000000e+00
## piog:rosi   2.544493e-02 6.756137e-04 1.229105e-02 8.478720e-17
## piog:sita   5.090128e-02 3.507765e-02 2.247806e-02 8.478720e-17
## piog:sulf   8.353576e-02 1.505072e-01 2.340430e-01 1.695744e-16
## piog:vild   5.090128e-02 3.507765e-02 2.247806e-02 1.695744e-16
## plac:rosi   2.582341e-02 3.440204e-02 3.476910e-02 8.478720e-17
## plac:sita   1.065062e-16 5.369698e-17 5.228577e-17 8.478720e-17
## plac:sulf   7.568026e-02 1.855849e-01 2.565210e-01 1.695744e-16
## plac:vild   0.000000e+00 0.000000e+00 5.228577e-17 1.695744e-16
## rosi:sita   2.582341e-02 3.440204e-02 3.476910e-02 0.000000e+00
## rosi:sulf   7.056910e-02 1.511828e-01 2.217519e-01 8.478720e-17
## rosi:vild   2.582341e-02 3.440204e-02 3.476910e-02 8.478720e-17
## sita:sulf   7.568026e-02 1.855849e-01 2.565210e-01 8.478720e-17
## sita:vild   1.065062e-16 5.369698e-17 0.000000e+00 8.478720e-17
## sulf:vild   7.568026e-02 1.855849e-01 2.565210e-01 0.000000e+00
##              metf:piog    metf:plac    metf:rosi    metf:sulf    migl:plac
## acar:benf 3.693606e-02 1.723667e-01 5.423948e-02 1.235764e-01 2.583740e-16
## acar:metf 7.707516e-02 2.929961e-01 1.614363e-01 2.096049e-01 5.167479e-16
## acar:migl 3.693606e-02 1.723667e-01 5.423948e-02 1.235764e-01 1.000000e+00
## acar:piog 3.617969e-01 3.454861e-02 1.217173e-02 1.485529e-01 3.875610e-16
## acar:plac 3.693606e-02 1.723667e-01 5.423948e-02 1.235764e-01 3.875610e-16
## acar:rosi 4.355917e-02 4.672869e-02 1.772435e-01 1.021092e-01 2.583740e-16
## acar:sita 3.693606e-02 1.723667e-01 5.423948e-02 1.235764e-01 2.583740e-16
## acar:sulf 1.243641e-02 8.652449e-02 2.352086e-03 2.413187e-01 1.291870e-16
## acar:vild 3.693606e-02 1.723667e-01 5.423948e-02 1.235764e-01 1.291870e-16
## benf:metf 1.140112e-01 4.653628e-01 2.156758e-01 8.602849e-02 2.583740e-16
## benf:migl 5.985679e-17 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00
## benf:piog 3.248608e-01 2.069153e-01 4.206775e-02 2.497653e-02 1.291870e-16
## benf:plac 0.000000e+00 1.356870e-16 8.614147e-17 0.000000e+00 1.291870e-16
## benf:rosi 6.623109e-03 1.256380e-01 1.230041e-01 2.146716e-02 0.000000e+00
## benf:sita 0.000000e+00 2.713740e-16 1.722829e-16 5.653535e-17 0.000000e+00
## benf:sulf 4.937247e-02 2.588912e-01 5.188739e-02 3.648951e-01 1.291870e-16
## benf:vild 0.000000e+00 1.356870e-16 1.722829e-16 5.653535e-17 1.291870e-16
## metf:migl 1.140112e-01 4.653628e-01 2.156758e-01 8.602849e-02 1.000000e+00
## metf:piog 4.388721e-01 2.584475e-01 1.736080e-01 6.105196e-02 1.291870e-16
## metf:plac 1.140112e-01 4.653628e-01 2.156758e-01 8.602849e-02 1.291870e-16
## metf:rosi 1.206343e-01 3.397248e-01 3.386798e-01 1.074957e-01 2.583740e-16
## metf:sita 1.140112e-01 4.653628e-01 2.156758e-01 8.602849e-02 2.583740e-16
## metf:sulf 6.463874e-02 2.064717e-01 1.637884e-01 4.509236e-01 3.875610e-16
## metf:vild 1.140112e-01 4.653628e-01 2.156758e-01 8.602849e-02 3.875610e-16
## migl:piog 3.248608e-01 2.069153e-01 4.206775e-02 2.497653e-02 1.000000e+00
## migl:plac 5.985679e-17 1.356870e-16 8.614147e-17 0.000000e+00 1.000000e+00
## migl:rosi 6.623109e-03 1.256380e-01 1.230041e-01 2.146716e-02 1.000000e+00
## migl:sita 5.985679e-17 2.713740e-16 1.722829e-16 5.653535e-17 1.000000e+00
## migl:sulf 4.937247e-02 2.588912e-01 5.188739e-02 3.648951e-01 1.000000e+00
## migl:vild 5.985679e-17 1.356870e-16 1.722829e-16 5.653535e-17 1.000000e+00
## piog:plac 3.248608e-01 2.069153e-01 4.206775e-02 2.497653e-02 0.000000e+00
## piog:rosi 3.182377e-01 8.127730e-02 1.650718e-01 4.644369e-02 1.291870e-16
## piog:sita 3.248608e-01 2.069153e-01 4.206775e-02 2.497653e-02 1.291870e-16
## piog:sulf 3.742333e-01 5.197589e-02 9.819641e-03 3.898717e-01 2.583740e-16
## piog:vild 3.248608e-01 2.069153e-01 4.206775e-02 2.497653e-02 2.583740e-16
## plac:rosi 6.623109e-03 1.256380e-01 1.230041e-01 2.146716e-02 1.291870e-16
## plac:sita 0.000000e+00 4.070610e-16 2.584244e-16 5.653535e-17 1.291870e-16
## plac:sulf 4.937247e-02 2.588912e-01 5.188739e-02 3.648951e-01 2.583740e-16
## plac:vild 0.000000e+00 0.000000e+00 8.614147e-17 5.653535e-17 2.583740e-16
## rosi:sita 6.623109e-03 1.256380e-01 1.230041e-01 2.146716e-02 0.000000e+00
## rosi:sulf 5.599558e-02 1.332532e-01 1.748915e-01 3.434280e-01 1.291870e-16
## rosi:vild 6.623109e-03 1.256380e-01 1.230041e-01 2.146716e-02 1.291870e-16
## sita:sulf 4.937247e-02 2.588912e-01 5.188739e-02 3.648951e-01 1.291870e-16
## sita:vild 0.000000e+00 4.070610e-16 3.445659e-16 1.130707e-16 1.291870e-16
## sulf:vild 4.937247e-02 2.588912e-01 5.188739e-02 3.648951e-01 0.000000e+00
##              piog:plac    piog:rosi    plac:rosi    plac:sita    plac:vild
## acar:benf 3.632228e-02 6.137752e-04 2.059020e-01 5.534126e-17 0.000000e+00
## acar:metf 4.846815e-02 2.860701e-02 9.168160e-02 1.106825e-16 0.000000e+00
## acar:migl 3.632228e-02 6.137752e-04 2.059020e-01 1.106825e-16 0.000000e+00
## acar:piog 3.502384e-01 2.879647e-01 1.272427e-01 1.660238e-16 0.000000e+00
## acar:plac 3.632228e-02 6.137752e-04 2.059020e-01 1.106825e-16 0.000000e+00
## acar:rosi 2.131442e-02 6.487359e-02 5.505979e-01 0.000000e+00 0.000000e+00
## acar:sita 3.632228e-02 6.137752e-04 2.059020e-01 1.000000e+00 0.000000e+00
## acar:sulf 2.390384e-02 1.146743e-02 2.137156e-01 0.000000e+00 5.554572e-17
## acar:vild 3.632228e-02 6.137752e-04 2.059020e-01 0.000000e+00 1.000000e+00
## benf:metf 8.479043e-02 2.922078e-02 2.975836e-01 5.534126e-17 0.000000e+00
## benf:migl 5.560227e-17 4.878213e-17 0.000000e+00 5.534126e-17 0.000000e+00
## benf:piog 3.865607e-01 2.885784e-01 3.331447e-01 1.106825e-16 0.000000e+00
## benf:plac 5.560227e-17 4.878213e-17 0.000000e+00 5.534126e-17 0.000000e+00
## benf:rosi 5.763670e-02 6.425981e-02 7.564999e-01 5.534126e-17 0.000000e+00
## benf:sita 1.112045e-16 9.756426e-17 0.000000e+00 1.000000e+00 0.000000e+00
## benf:sulf 6.022613e-02 1.085365e-02 4.196176e-01 5.534126e-17 5.554572e-17
## benf:vild 5.560227e-17 9.756426e-17 3.213855e-16 5.534126e-17 1.000000e+00
## metf:migl 8.479043e-02 2.922078e-02 2.975836e-01 0.000000e+00 0.000000e+00
## metf:piog 3.017703e-01 2.593576e-01 3.556107e-02 5.534126e-17 0.000000e+00
## metf:plac 8.479043e-02 2.922078e-02 2.975836e-01 0.000000e+00 0.000000e+00
## metf:rosi 2.715373e-02 9.348059e-02 4.589163e-01 1.106825e-16 0.000000e+00
## metf:sita 8.479043e-02 2.922078e-02 2.975836e-01 1.000000e+00 0.000000e+00
## metf:sulf 2.456431e-02 4.007444e-02 1.220340e-01 1.106825e-16 5.554572e-17
## metf:vild 8.479043e-02 2.922078e-02 2.975836e-01 1.106825e-16 1.000000e+00
## migl:piog 3.865607e-01 2.885784e-01 3.331447e-01 5.534126e-17 0.000000e+00
## migl:plac 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## migl:rosi 5.763670e-02 6.425981e-02 7.564999e-01 1.106825e-16 0.000000e+00
## migl:sita 1.668068e-16 1.463464e-16 0.000000e+00 1.000000e+00 0.000000e+00
## migl:sulf 6.022613e-02 1.085365e-02 4.196176e-01 1.106825e-16 5.554572e-17
## migl:vild 0.000000e+00 4.878213e-17 3.213855e-16 1.106825e-16 1.000000e+00
## piog:plac 3.865607e-01 2.885784e-01 3.331447e-01 5.534126e-17 0.000000e+00
## piog:rosi 3.289240e-01 3.528382e-01 4.233552e-01 1.660238e-16 0.000000e+00
## piog:sita 3.865607e-01 2.885784e-01 3.331447e-01 1.000000e+00 0.000000e+00
## piog:sulf 3.263346e-01 2.994321e-01 8.647291e-02 1.660238e-16 5.554572e-17
## piog:vild 3.865607e-01 2.885784e-01 3.331447e-01 1.660238e-16 1.000000e+00
## plac:rosi 5.763670e-02 6.425981e-02 7.564999e-01 1.106825e-16 0.000000e+00
## plac:sita 1.668068e-16 1.463464e-16 0.000000e+00 1.000000e+00 0.000000e+00
## plac:sulf 6.022613e-02 1.085365e-02 4.196176e-01 1.106825e-16 5.554572e-17
## plac:vild 0.000000e+00 4.878213e-17 3.213855e-16 1.106825e-16 1.000000e+00
## rosi:sita 5.763670e-02 6.425981e-02 7.564999e-01 1.000000e+00 0.000000e+00
## rosi:sulf 2.589425e-03 5.340616e-02 3.368823e-01 0.000000e+00 5.554572e-17
## rosi:vild 5.763670e-02 6.425981e-02 7.564999e-01 0.000000e+00 1.000000e+00
## sita:sulf 6.022613e-02 1.085365e-02 4.196176e-01 1.000000e+00 5.554572e-17
## sita:vild 1.668068e-16 1.951285e-16 3.213855e-16 1.000000e+00 1.000000e+00
## sulf:vild 6.022613e-02 1.085365e-02 4.196176e-01 0.000000e+00 1.000000e+00
##              rosi:sulf
## acar:benf 1.510487e-01
## acar:metf 9.836169e-02
## acar:migl 1.510487e-01
## acar:piog 1.485503e-01
## acar:plac 1.510487e-01
## acar:rosi 2.072850e-01
## acar:sita 1.510487e-01
## acar:sulf 2.275351e-01
## acar:vild 1.510487e-01
## benf:metf 5.268705e-02
## benf:migl 0.000000e+00
## benf:piog 2.498476e-03
## benf:plac 5.364935e-17
## benf:rosi 5.623626e-02
## benf:sita 5.364935e-17
## benf:sulf 3.785838e-01
## benf:vild 5.364935e-17
## metf:migl 5.268705e-02
## metf:piog 5.018857e-02
## metf:plac 5.268705e-02
## metf:rosi 1.089233e-01
## metf:sita 5.268705e-02
## metf:sulf 3.258968e-01
## metf:vild 5.268705e-02
## migl:piog 2.498476e-03
## migl:plac 5.364935e-17
## migl:rosi 5.623626e-02
## migl:sita 5.364935e-17
## migl:sulf 3.785838e-01
## migl:vild 5.364935e-17
## piog:plac 2.498476e-03
## piog:rosi 5.873474e-02
## piog:sita 2.498476e-03
## piog:sulf 3.760853e-01
## piog:vild 2.498476e-03
## plac:rosi 5.623626e-02
## plac:sita 1.072987e-16
## plac:sulf 3.785838e-01
## plac:vild 0.000000e+00
## rosi:sita 5.623626e-02
## rosi:sulf 4.348201e-01
## rosi:vild 5.623626e-02
## sita:sulf 3.785838e-01
## sita:vild 1.072987e-16
## sulf:vild 3.785838e-01
data(Senn2013)

# Fixed effect model (default)
net1 <- netmeta(TE, seTE, treat1, treat2, studlab,
data=Senn2013, sm="MD")
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
net1
## Original data (with adjusted standard errors for multi-arm studies):
## 
##                    treat1 treat2    TE   seTE seTE.adj narms multiarm
## DeFronzo1995         metf   plac -1.90 0.1414   0.1414     2         
## Lewin2007            metf   plac -0.82 0.0992   0.0992     2         
## Willms1999           acar   metf  0.20 0.3579   0.3884     3        *
## Davidson2007         plac   rosi  1.34 0.1435   0.1435     2         
## Wolffenbuttel1999    plac   rosi  1.10 0.1141   0.1141     2         
## Kipnes2001           piog   plac -1.30 0.1268   0.1268     2         
## Kerenyi2004          plac   rosi  0.77 0.1078   0.1078     2         
## Hanefeld2004         metf   piog -0.16 0.0849   0.0849     2         
## Derosa2004           piog   rosi  0.10 0.1831   0.1831     2         
## Baksi2004            plac   rosi  1.30 0.1014   0.1014     2         
## Rosenstock2008       plac   rosi  1.09 0.2263   0.2263     2         
## Zhu2003              plac   rosi  1.50 0.1624   0.1624     2         
## Yang2003             metf   rosi  0.14 0.2239   0.2239     2         
## Vongthavaravat2002   rosi   sulf -1.20 0.1436   0.1436     2         
## Oyama2008            acar   sulf -0.40 0.1549   0.1549     2         
## Costa1997            acar   plac -0.80 0.1432   0.1432     2         
## Hermansen2007        plac   sita  0.57 0.1291   0.1291     2         
## Garber2008           plac   vild  0.70 0.1273   0.1273     2         
## Alex1998             metf   sulf -0.37 0.1184   0.1184     2         
## Johnston1994         migl   plac -0.74 0.1839   0.1839     2         
## Johnston1998a        migl   plac -1.41 0.2235   0.2235     2         
## Kim2007              metf   rosi  0.00 0.2339   0.2339     2         
## Johnston1998b        migl   plac -0.68 0.2828   0.2828     2         
## Gonzalez-Ortiz2004   metf   plac -0.40 0.4356   0.4356     2         
## Stucci1996           benf   plac -0.23 0.3467   0.3467     2         
## Moulin2006           benf   plac -1.01 0.1366   0.1366     2         
## Willms1999           metf   plac -1.20 0.3758   0.4125     3        *
## Willms1999           acar   plac -1.00 0.4669   0.8242     3        *
## 
## Number of treatment arms (by study):
##                    narms
## Alex1998               2
## Baksi2004              2
## Costa1997              2
## Davidson2007           2
## DeFronzo1995           2
## Derosa2004             2
## Garber2008             2
## Gonzalez-Ortiz2004     2
## Hanefeld2004           2
## Hermansen2007          2
## Johnston1994           2
## Johnston1998a          2
## Johnston1998b          2
## Kerenyi2004            2
## Kim2007                2
## Kipnes2001             2
## Lewin2007              2
## Moulin2006             2
## Oyama2008              2
## Rosenstock2008         2
## Stucci1996             2
## Vongthavaravat2002     2
## Willms1999             3
## Wolffenbuttel1999      2
## Yang2003               2
## Zhu2003                2
## 
## Results (fixed effect model):
## 
##                    treat1 treat2      MD              95%-CI     Q
## DeFronzo1995         metf   plac -1.1141  [-1.2309; -0.9973] 30.89
## Lewin2007            metf   plac -1.1141  [-1.2309; -0.9973]  8.79
## Willms1999           acar   metf  0.2867  [ 0.0622;  0.5113]  0.05
## Davidson2007         plac   rosi  1.2018  [ 1.1084;  1.2953]  0.93
## Wolffenbuttel1999    plac   rosi  1.2018  [ 1.1084;  1.2953]  0.80
## Kipnes2001           piog   plac -1.0664  [-1.2151; -0.9178]  3.39
## Kerenyi2004          plac   rosi  1.2018  [ 1.1084;  1.2953] 16.05
## Hanefeld2004         metf   piog -0.0477  [-0.1845;  0.0891]  1.75
## Derosa2004           piog   rosi  0.1354  [-0.0249;  0.2957]  0.04
## Baksi2004            plac   rosi  1.2018  [ 1.1084;  1.2953]  0.94
## Rosenstock2008       plac   rosi  1.2018  [ 1.1084;  1.2953]  0.24
## Zhu2003              plac   rosi  1.2018  [ 1.1084;  1.2953]  3.37
## Yang2003             metf   rosi  0.0877  [-0.0449;  0.2203]  0.05
## Vongthavaravat2002   rosi   sulf -0.7623  [-0.9427; -0.5820]  9.29
## Oyama2008            acar   sulf -0.3879  [-0.6095; -0.1662]  0.01
## Costa1997            acar   plac -0.8274  [-1.0401; -0.6147]  0.04
## Hermansen2007        plac   sita  0.5700  [ 0.3170;  0.8230]  0.00
## Garber2008           plac   vild  0.7000  [ 0.4505;  0.9495]  0.00
## Alex1998             metf   sulf -0.6746  [-0.8482; -0.5011]  6.62
## Johnston1994         migl   plac -0.9439  [-1.1927; -0.6952]  1.23
## Johnston1998a        migl   plac -0.9439  [-1.1927; -0.6952]  4.35
## Kim2007              metf   rosi  0.0877  [-0.0449;  0.2203]  0.14
## Johnston1998b        migl   plac -0.9439  [-1.1927; -0.6952]  0.87
## Gonzalez-Ortiz2004   metf   plac -1.1141  [-1.2309; -0.9973]  2.69
## Stucci1996           benf   plac -0.9052  [-1.1543; -0.6561]  3.79
## Moulin2006           benf   plac -0.9052  [-1.1543; -0.6561]  0.59
## Willms1999           metf   plac -1.1141  [-1.2309; -0.9973]  0.04
## Willms1999           acar   plac -0.8274  [-1.0401; -0.6147]  0.04
##                    leverage
## DeFronzo1995           0.18
## Lewin2007              0.36
## Willms1999             0.09
## Davidson2007           0.11
## Wolffenbuttel1999      0.17
## Kipnes2001             0.36
## Kerenyi2004            0.20
## Hanefeld2004           0.68
## Derosa2004             0.20
## Baksi2004              0.22
## Rosenstock2008         0.04
## Zhu2003                0.09
## Yang2003               0.09
## Vongthavaravat2002     0.41
## Oyama2008              0.53
## Costa1997              0.57
## Hermansen2007          1.00
## Garber2008             1.00
## Alex1998               0.56
## Johnston1994           0.48
## Johnston1998a          0.32
## Kim2007                0.08
## Johnston1998b          0.20
## Gonzalez-Ortiz2004     0.02
## Stucci1996             0.13
## Moulin2006             0.87
## Willms1999             0.02
## Willms1999             0.02
## 
## Number of studies: k = 26
## Number of treatments: n = 10
## Number of pairwise comparisons: m = 28
## Number of designs: d = 15
## 
## Fixed effect model
## 
## Treatment estimate (sm = 'MD'):
##         acar    benf    metf    migl    piog    plac   rosi    sita
## acar       .  0.0778  0.2867  0.1166  0.2391 -0.8274 0.3745 -0.2574
## benf -0.0778       .  0.2089  0.0387  0.1612 -0.9052 0.2967 -0.3352
## metf -0.2867 -0.2089       . -0.1702 -0.0477 -1.1141 0.0877 -0.5441
## migl -0.1166 -0.0387  0.1702       .  0.1225 -0.9439 0.2579 -0.3739
## piog -0.2391 -0.1612  0.0477 -0.1225       . -1.0664 0.1354 -0.4964
## plac  0.8274  0.9052  1.1141  0.9439  1.0664       . 1.2018  0.5700
## rosi -0.3745 -0.2967 -0.0877 -0.2579 -0.1354 -1.2018      . -0.6318
## sita  0.2574  0.3352  0.5441  0.3739  0.4964 -0.5700 0.6318       .
## sulf  0.3879  0.4657  0.6746  0.5044  0.6269 -0.4395 0.7623  0.1305
## vild  0.1274  0.2052  0.4141  0.2439  0.3664 -0.7000 0.5018 -0.1300
##         sulf    vild
## acar -0.3879 -0.1274
## benf -0.4657 -0.2052
## metf -0.6746 -0.4141
## migl -0.5044 -0.2439
## piog -0.6269 -0.3664
## plac  0.4395  0.7000
## rosi -0.7623 -0.5018
## sita -0.1305  0.1300
## sulf       .  0.2605
## vild -0.2605       .
## 
## Lower 95%-confidence limit:
##         acar    benf    metf    migl    piog    plac    rosi    sita
## acar       . -0.2497  0.0622 -0.2107 -0.0094 -1.0401  0.1506 -0.5879
## benf -0.4054       . -0.0662 -0.3133 -0.1288 -1.1543  0.0306 -0.6903
## metf -0.5113 -0.4841       . -0.4450 -0.1845 -1.2309 -0.0449 -0.8228
## migl -0.4438 -0.3908 -0.1046       . -0.1673 -1.1927 -0.0078 -0.7287
## piog -0.4876 -0.4513 -0.0891 -0.4123       . -1.2151 -0.0249 -0.7899
## plac  0.6147  0.6561  0.9973  0.6952  0.9178       .  1.1084  0.3170
## rosi -0.5983 -0.5627 -0.2203 -0.5236 -0.2957 -1.2953       . -0.9016
## sita -0.0732 -0.0199  0.2654  0.0191  0.2030 -0.8230  0.3621       .
## sulf  0.1662  0.1588  0.5011  0.1978  0.4178 -0.6188  0.5820 -0.1796
## vild -0.2005 -0.1474  0.1386 -0.1084  0.0760 -0.9495  0.2354 -0.4854
##         sulf    vild
## acar -0.6095 -0.4552
## benf -0.7726 -0.5577
## metf -0.8482 -0.6896
## migl -0.8111 -0.5962
## piog -0.8361 -0.6569
## plac  0.2602  0.4505
## rosi -0.9427 -0.7683
## sita -0.4406 -0.2254
## sulf       . -0.0467
## vild -0.5677       .
## 
## Upper 95%-confidence limit:
##         acar    benf   metf   migl   piog    plac   rosi    sita    sulf
## acar       .  0.4054 0.5113 0.4438 0.4876 -0.6147 0.5983  0.0732 -0.1662
## benf  0.2497       . 0.4841 0.3908 0.4513 -0.6561 0.5627  0.0199 -0.1588
## metf -0.0622  0.0662      . 0.1046 0.0891 -0.9973 0.2203 -0.2654 -0.5011
## migl  0.2107  0.3133 0.4450      . 0.4123 -0.6952 0.5236 -0.0191 -0.1978
## piog  0.0094  0.1288 0.1845 0.1673      . -0.9178 0.2957 -0.2030 -0.4178
## plac  1.0401  1.1543 1.2309 1.1927 1.2151       . 1.2953  0.8230  0.6188
## rosi -0.1506 -0.0306 0.0449 0.0078 0.0249 -1.1084      . -0.3621 -0.5820
## sita  0.5879  0.6903 0.8228 0.7287 0.7899 -0.3170 0.9016       .  0.1796
## sulf  0.6095  0.7726 0.8482 0.8111 0.8361 -0.2602 0.9427  0.4406       .
## vild  0.4552  0.5577 0.6896 0.5962 0.6569 -0.4505 0.7683  0.2254  0.0467
##         vild
## acar  0.2005
## benf  0.1474
## metf -0.1386
## migl  0.1084
## piog -0.0760
## plac  0.9495
## rosi -0.2354
## sita  0.4854
## sulf  0.5677
## vild       .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.1087; I^2 = 81.4%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                     Q d.f.  p-value
## Total           96.99   18 < 0.0001
## Within designs  74.46   11 < 0.0001
## Between designs 22.53    7   0.0021
net1$Q.decomp
##    treat1 treat2           Q df       pval.Q
## 1    acar   metf  0.00000000  0 1.000000e+00
## 2    acar   plac  0.05715942  1 8.110433e-01
## 3    acar   sulf  0.00000000  0 1.000000e+00
## 4    benf   plac  4.38137713  1 3.633363e-02
## 5    metf   piog  0.00000000  0 1.000000e+00
## 6    metf   plac 42.17838677  3 3.677205e-09
## 7    metf   rosi  0.18695080  1 6.654667e-01
## 8    metf   sulf  0.00000000  0 1.000000e+00
## 9    migl   plac  6.44927778  2 3.977014e-02
## 10   piog   plac  0.00000000  0 1.000000e+00
## 11   piog   rosi  0.00000000  0 1.000000e+00
## 12   plac   rosi 21.27336195  5 7.191616e-04
## 13   plac   sita  0.00000000  0 1.000000e+00
## 14   plac   vild  0.00000000  0 1.000000e+00
## 15   rosi   sulf  0.00000000  0 1.000000e+00
# Comparison with reference group
print(net1, reference="plac")
## Original data (with adjusted standard errors for multi-arm studies):
## 
##                    treat1 treat2    TE   seTE seTE.adj narms multiarm
## DeFronzo1995         metf   plac -1.90 0.1414   0.1414     2         
## Lewin2007            metf   plac -0.82 0.0992   0.0992     2         
## Willms1999           acar   metf  0.20 0.3579   0.3884     3        *
## Davidson2007         plac   rosi  1.34 0.1435   0.1435     2         
## Wolffenbuttel1999    plac   rosi  1.10 0.1141   0.1141     2         
## Kipnes2001           piog   plac -1.30 0.1268   0.1268     2         
## Kerenyi2004          plac   rosi  0.77 0.1078   0.1078     2         
## Hanefeld2004         metf   piog -0.16 0.0849   0.0849     2         
## Derosa2004           piog   rosi  0.10 0.1831   0.1831     2         
## Baksi2004            plac   rosi  1.30 0.1014   0.1014     2         
## Rosenstock2008       plac   rosi  1.09 0.2263   0.2263     2         
## Zhu2003              plac   rosi  1.50 0.1624   0.1624     2         
## Yang2003             metf   rosi  0.14 0.2239   0.2239     2         
## Vongthavaravat2002   rosi   sulf -1.20 0.1436   0.1436     2         
## Oyama2008            acar   sulf -0.40 0.1549   0.1549     2         
## Costa1997            acar   plac -0.80 0.1432   0.1432     2         
## Hermansen2007        plac   sita  0.57 0.1291   0.1291     2         
## Garber2008           plac   vild  0.70 0.1273   0.1273     2         
## Alex1998             metf   sulf -0.37 0.1184   0.1184     2         
## Johnston1994         migl   plac -0.74 0.1839   0.1839     2         
## Johnston1998a        migl   plac -1.41 0.2235   0.2235     2         
## Kim2007              metf   rosi  0.00 0.2339   0.2339     2         
## Johnston1998b        migl   plac -0.68 0.2828   0.2828     2         
## Gonzalez-Ortiz2004   metf   plac -0.40 0.4356   0.4356     2         
## Stucci1996           benf   plac -0.23 0.3467   0.3467     2         
## Moulin2006           benf   plac -1.01 0.1366   0.1366     2         
## Willms1999           metf   plac -1.20 0.3758   0.4125     3        *
## Willms1999           acar   plac -1.00 0.4669   0.8242     3        *
## 
## Number of treatment arms (by study):
##                    narms
## Alex1998               2
## Baksi2004              2
## Costa1997              2
## Davidson2007           2
## DeFronzo1995           2
## Derosa2004             2
## Garber2008             2
## Gonzalez-Ortiz2004     2
## Hanefeld2004           2
## Hermansen2007          2
## Johnston1994           2
## Johnston1998a          2
## Johnston1998b          2
## Kerenyi2004            2
## Kim2007                2
## Kipnes2001             2
## Lewin2007              2
## Moulin2006             2
## Oyama2008              2
## Rosenstock2008         2
## Stucci1996             2
## Vongthavaravat2002     2
## Willms1999             3
## Wolffenbuttel1999      2
## Yang2003               2
## Zhu2003                2
## 
## Results (fixed effect model):
## 
##                    treat1 treat2      MD              95%-CI     Q
## DeFronzo1995         metf   plac -1.1141  [-1.2309; -0.9973] 30.89
## Lewin2007            metf   plac -1.1141  [-1.2309; -0.9973]  8.79
## Willms1999           acar   metf  0.2867  [ 0.0622;  0.5113]  0.05
## Davidson2007         plac   rosi  1.2018  [ 1.1084;  1.2953]  0.93
## Wolffenbuttel1999    plac   rosi  1.2018  [ 1.1084;  1.2953]  0.80
## Kipnes2001           piog   plac -1.0664  [-1.2151; -0.9178]  3.39
## Kerenyi2004          plac   rosi  1.2018  [ 1.1084;  1.2953] 16.05
## Hanefeld2004         metf   piog -0.0477  [-0.1845;  0.0891]  1.75
## Derosa2004           piog   rosi  0.1354  [-0.0249;  0.2957]  0.04
## Baksi2004            plac   rosi  1.2018  [ 1.1084;  1.2953]  0.94
## Rosenstock2008       plac   rosi  1.2018  [ 1.1084;  1.2953]  0.24
## Zhu2003              plac   rosi  1.2018  [ 1.1084;  1.2953]  3.37
## Yang2003             metf   rosi  0.0877  [-0.0449;  0.2203]  0.05
## Vongthavaravat2002   rosi   sulf -0.7623  [-0.9427; -0.5820]  9.29
## Oyama2008            acar   sulf -0.3879  [-0.6095; -0.1662]  0.01
## Costa1997            acar   plac -0.8274  [-1.0401; -0.6147]  0.04
## Hermansen2007        plac   sita  0.5700  [ 0.3170;  0.8230]  0.00
## Garber2008           plac   vild  0.7000  [ 0.4505;  0.9495]  0.00
## Alex1998             metf   sulf -0.6746  [-0.8482; -0.5011]  6.62
## Johnston1994         migl   plac -0.9439  [-1.1927; -0.6952]  1.23
## Johnston1998a        migl   plac -0.9439  [-1.1927; -0.6952]  4.35
## Kim2007              metf   rosi  0.0877  [-0.0449;  0.2203]  0.14
## Johnston1998b        migl   plac -0.9439  [-1.1927; -0.6952]  0.87
## Gonzalez-Ortiz2004   metf   plac -1.1141  [-1.2309; -0.9973]  2.69
## Stucci1996           benf   plac -0.9052  [-1.1543; -0.6561]  3.79
## Moulin2006           benf   plac -0.9052  [-1.1543; -0.6561]  0.59
## Willms1999           metf   plac -1.1141  [-1.2309; -0.9973]  0.04
## Willms1999           acar   plac -0.8274  [-1.0401; -0.6147]  0.04
##                    leverage
## DeFronzo1995           0.18
## Lewin2007              0.36
## Willms1999             0.09
## Davidson2007           0.11
## Wolffenbuttel1999      0.17
## Kipnes2001             0.36
## Kerenyi2004            0.20
## Hanefeld2004           0.68
## Derosa2004             0.20
## Baksi2004              0.22
## Rosenstock2008         0.04
## Zhu2003                0.09
## Yang2003               0.09
## Vongthavaravat2002     0.41
## Oyama2008              0.53
## Costa1997              0.57
## Hermansen2007          1.00
## Garber2008             1.00
## Alex1998               0.56
## Johnston1994           0.48
## Johnston1998a          0.32
## Kim2007                0.08
## Johnston1998b          0.20
## Gonzalez-Ortiz2004     0.02
## Stucci1996             0.13
## Moulin2006             0.87
## Willms1999             0.02
## Willms1999             0.02
## 
## Number of studies: k = 26
## Number of treatments: n = 10
## Number of pairwise comparisons: m = 28
## Number of designs: d = 15
## 
## Fixed effect model
## 
## Treatment estimate (sm = 'MD', comparison: other treatments vs 'plac'):
##           MD              95%-CI
## acar -0.8274  [-1.0401; -0.6147]
## benf -0.9052  [-1.1543; -0.6561]
## metf -1.1141  [-1.2309; -0.9973]
## migl -0.9439  [-1.1927; -0.6952]
## piog -1.0664  [-1.2151; -0.9178]
## plac       .                   .
## rosi -1.2018  [-1.2953; -1.1084]
## sita -0.5700  [-0.8230; -0.3170]
## sulf -0.4395  [-0.6188; -0.2602]
## vild -0.7000  [-0.9495; -0.4505]
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.1087; I^2 = 81.4%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                     Q d.f.  p-value
## Total           96.99   18 < 0.0001
## Within designs  74.46   11 < 0.0001
## Between designs 22.53    7   0.0021
# Random effects model
net2 <- netmeta(TE, seTE, treat1, treat2, studlab,
data=Senn2013, sm="MD", comb.random=TRUE)
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
net2
## Original data (with adjusted standard errors for multi-arm studies):
## 
##                    treat1 treat2    TE   seTE seTE.adj narms multiarm
## DeFronzo1995         metf   plac -1.90 0.1414   0.1414     2         
## Lewin2007            metf   plac -0.82 0.0992   0.0992     2         
## Willms1999           acar   metf  0.20 0.3579   0.3884     3        *
## Davidson2007         plac   rosi  1.34 0.1435   0.1435     2         
## Wolffenbuttel1999    plac   rosi  1.10 0.1141   0.1141     2         
## Kipnes2001           piog   plac -1.30 0.1268   0.1268     2         
## Kerenyi2004          plac   rosi  0.77 0.1078   0.1078     2         
## Hanefeld2004         metf   piog -0.16 0.0849   0.0849     2         
## Derosa2004           piog   rosi  0.10 0.1831   0.1831     2         
## Baksi2004            plac   rosi  1.30 0.1014   0.1014     2         
## Rosenstock2008       plac   rosi  1.09 0.2263   0.2263     2         
## Zhu2003              plac   rosi  1.50 0.1624   0.1624     2         
## Yang2003             metf   rosi  0.14 0.2239   0.2239     2         
## Vongthavaravat2002   rosi   sulf -1.20 0.1436   0.1436     2         
## Oyama2008            acar   sulf -0.40 0.1549   0.1549     2         
## Costa1997            acar   plac -0.80 0.1432   0.1432     2         
## Hermansen2007        plac   sita  0.57 0.1291   0.1291     2         
## Garber2008           plac   vild  0.70 0.1273   0.1273     2         
## Alex1998             metf   sulf -0.37 0.1184   0.1184     2         
## Johnston1994         migl   plac -0.74 0.1839   0.1839     2         
## Johnston1998a        migl   plac -1.41 0.2235   0.2235     2         
## Kim2007              metf   rosi  0.00 0.2339   0.2339     2         
## Johnston1998b        migl   plac -0.68 0.2828   0.2828     2         
## Gonzalez-Ortiz2004   metf   plac -0.40 0.4356   0.4356     2         
## Stucci1996           benf   plac -0.23 0.3467   0.3467     2         
## Moulin2006           benf   plac -1.01 0.1366   0.1366     2         
## Willms1999           metf   plac -1.20 0.3758   0.4125     3        *
## Willms1999           acar   plac -1.00 0.4669   0.8242     3        *
## 
## Number of treatment arms (by study):
##                    narms
## Alex1998               2
## Baksi2004              2
## Costa1997              2
## Davidson2007           2
## DeFronzo1995           2
## Derosa2004             2
## Garber2008             2
## Gonzalez-Ortiz2004     2
## Hanefeld2004           2
## Hermansen2007          2
## Johnston1994           2
## Johnston1998a          2
## Johnston1998b          2
## Kerenyi2004            2
## Kim2007                2
## Kipnes2001             2
## Lewin2007              2
## Moulin2006             2
## Oyama2008              2
## Rosenstock2008         2
## Stucci1996             2
## Vongthavaravat2002     2
## Willms1999             3
## Wolffenbuttel1999      2
## Yang2003               2
## Zhu2003                2
## 
## Results (fixed effect model):
## 
##                    treat1 treat2      MD              95%-CI     Q
## DeFronzo1995         metf   plac -1.1141  [-1.2309; -0.9973] 30.89
## Lewin2007            metf   plac -1.1141  [-1.2309; -0.9973]  8.79
## Willms1999           acar   metf  0.2867  [ 0.0622;  0.5113]  0.05
## Davidson2007         plac   rosi  1.2018  [ 1.1084;  1.2953]  0.93
## Wolffenbuttel1999    plac   rosi  1.2018  [ 1.1084;  1.2953]  0.80
## Kipnes2001           piog   plac -1.0664  [-1.2151; -0.9178]  3.39
## Kerenyi2004          plac   rosi  1.2018  [ 1.1084;  1.2953] 16.05
## Hanefeld2004         metf   piog -0.0477  [-0.1845;  0.0891]  1.75
## Derosa2004           piog   rosi  0.1354  [-0.0249;  0.2957]  0.04
## Baksi2004            plac   rosi  1.2018  [ 1.1084;  1.2953]  0.94
## Rosenstock2008       plac   rosi  1.2018  [ 1.1084;  1.2953]  0.24
## Zhu2003              plac   rosi  1.2018  [ 1.1084;  1.2953]  3.37
## Yang2003             metf   rosi  0.0877  [-0.0449;  0.2203]  0.05
## Vongthavaravat2002   rosi   sulf -0.7623  [-0.9427; -0.5820]  9.29
## Oyama2008            acar   sulf -0.3879  [-0.6095; -0.1662]  0.01
## Costa1997            acar   plac -0.8274  [-1.0401; -0.6147]  0.04
## Hermansen2007        plac   sita  0.5700  [ 0.3170;  0.8230]  0.00
## Garber2008           plac   vild  0.7000  [ 0.4505;  0.9495]  0.00
## Alex1998             metf   sulf -0.6746  [-0.8482; -0.5011]  6.62
## Johnston1994         migl   plac -0.9439  [-1.1927; -0.6952]  1.23
## Johnston1998a        migl   plac -0.9439  [-1.1927; -0.6952]  4.35
## Kim2007              metf   rosi  0.0877  [-0.0449;  0.2203]  0.14
## Johnston1998b        migl   plac -0.9439  [-1.1927; -0.6952]  0.87
## Gonzalez-Ortiz2004   metf   plac -1.1141  [-1.2309; -0.9973]  2.69
## Stucci1996           benf   plac -0.9052  [-1.1543; -0.6561]  3.79
## Moulin2006           benf   plac -0.9052  [-1.1543; -0.6561]  0.59
## Willms1999           metf   plac -1.1141  [-1.2309; -0.9973]  0.04
## Willms1999           acar   plac -0.8274  [-1.0401; -0.6147]  0.04
##                    leverage
## DeFronzo1995           0.18
## Lewin2007              0.36
## Willms1999             0.09
## Davidson2007           0.11
## Wolffenbuttel1999      0.17
## Kipnes2001             0.36
## Kerenyi2004            0.20
## Hanefeld2004           0.68
## Derosa2004             0.20
## Baksi2004              0.22
## Rosenstock2008         0.04
## Zhu2003                0.09
## Yang2003               0.09
## Vongthavaravat2002     0.41
## Oyama2008              0.53
## Costa1997              0.57
## Hermansen2007          1.00
## Garber2008             1.00
## Alex1998               0.56
## Johnston1994           0.48
## Johnston1998a          0.32
## Kim2007                0.08
## Johnston1998b          0.20
## Gonzalez-Ortiz2004     0.02
## Stucci1996             0.13
## Moulin2006             0.87
## Willms1999             0.02
## Willms1999             0.02
## 
## Results (random effects model):
## 
##                    treat1 treat2      MD              95%-CI
## DeFronzo1995         metf   plac -1.1268  [-1.4291; -0.8244]
## Lewin2007            metf   plac -1.1268  [-1.4291; -0.8244]
## Willms1999           acar   metf  0.2850  [-0.2208;  0.7908]
## Davidson2007         plac   rosi  1.2335  [ 0.9830;  1.4839]
## Wolffenbuttel1999    plac   rosi  1.2335  [ 0.9830;  1.4839]
## Kipnes2001           piog   plac -1.1291  [-1.5596; -0.6986]
## Kerenyi2004          plac   rosi  1.2335  [ 0.9830;  1.4839]
## Hanefeld2004         metf   piog  0.0023  [-0.4398;  0.4444]
## Derosa2004           piog   rosi  0.1044  [-0.3347;  0.5435]
## Baksi2004            plac   rosi  1.2335  [ 0.9830;  1.4839]
## Rosenstock2008       plac   rosi  1.2335  [ 0.9830;  1.4839]
## Zhu2003              plac   rosi  1.2335  [ 0.9830;  1.4839]
## Yang2003             metf   rosi  0.1067  [-0.2170;  0.4304]
## Vongthavaravat2002   rosi   sulf -0.8169  [-1.2817; -0.3521]
## Oyama2008            acar   sulf -0.4252  [-0.9456;  0.0951]
## Costa1997            acar   plac -0.8418  [-1.3236; -0.3600]
## Hermansen2007        plac   sita  0.5700  [-0.1240;  1.2640]
## Garber2008           plac   vild  0.7000  [ 0.0073;  1.3927]
## Alex1998             metf   sulf -0.7102  [-1.1713; -0.2491]
## Johnston1994         migl   plac -0.9497  [-1.4040; -0.4955]
## Johnston1998a        migl   plac -0.9497  [-1.4040; -0.4955]
## Kim2007              metf   rosi  0.1067  [-0.2170;  0.4304]
## Johnston1998b        migl   plac -0.9497  [-1.4040; -0.4955]
## Gonzalez-Ortiz2004   metf   plac -1.1268  [-1.4291; -0.8244]
## Stucci1996           benf   plac -0.7311  [-1.2918; -0.1705]
## Moulin2006           benf   plac -0.7311  [-1.2918; -0.1705]
## Willms1999           metf   plac -1.1268  [-1.4291; -0.8244]
## Willms1999           acar   plac -0.8418  [-1.3236; -0.3600]
## 
## Number of studies: k = 26
## Number of treatments: n = 10
## Number of pairwise comparisons: m = 28
## Number of designs: d = 15
## 
## Fixed effect model
## 
## Treatment estimate (sm = 'MD'):
##         acar    benf    metf    migl    piog    plac   rosi    sita
## acar       .  0.0778  0.2867  0.1166  0.2391 -0.8274 0.3745 -0.2574
## benf -0.0778       .  0.2089  0.0387  0.1612 -0.9052 0.2967 -0.3352
## metf -0.2867 -0.2089       . -0.1702 -0.0477 -1.1141 0.0877 -0.5441
## migl -0.1166 -0.0387  0.1702       .  0.1225 -0.9439 0.2579 -0.3739
## piog -0.2391 -0.1612  0.0477 -0.1225       . -1.0664 0.1354 -0.4964
## plac  0.8274  0.9052  1.1141  0.9439  1.0664       . 1.2018  0.5700
## rosi -0.3745 -0.2967 -0.0877 -0.2579 -0.1354 -1.2018      . -0.6318
## sita  0.2574  0.3352  0.5441  0.3739  0.4964 -0.5700 0.6318       .
## sulf  0.3879  0.4657  0.6746  0.5044  0.6269 -0.4395 0.7623  0.1305
## vild  0.1274  0.2052  0.4141  0.2439  0.3664 -0.7000 0.5018 -0.1300
##         sulf    vild
## acar -0.3879 -0.1274
## benf -0.4657 -0.2052
## metf -0.6746 -0.4141
## migl -0.5044 -0.2439
## piog -0.6269 -0.3664
## plac  0.4395  0.7000
## rosi -0.7623 -0.5018
## sita -0.1305  0.1300
## sulf       .  0.2605
## vild -0.2605       .
## 
## Lower 95%-confidence limit:
##         acar    benf    metf    migl    piog    plac    rosi    sita
## acar       . -0.2497  0.0622 -0.2107 -0.0094 -1.0401  0.1506 -0.5879
## benf -0.4054       . -0.0662 -0.3133 -0.1288 -1.1543  0.0306 -0.6903
## metf -0.5113 -0.4841       . -0.4450 -0.1845 -1.2309 -0.0449 -0.8228
## migl -0.4438 -0.3908 -0.1046       . -0.1673 -1.1927 -0.0078 -0.7287
## piog -0.4876 -0.4513 -0.0891 -0.4123       . -1.2151 -0.0249 -0.7899
## plac  0.6147  0.6561  0.9973  0.6952  0.9178       .  1.1084  0.3170
## rosi -0.5983 -0.5627 -0.2203 -0.5236 -0.2957 -1.2953       . -0.9016
## sita -0.0732 -0.0199  0.2654  0.0191  0.2030 -0.8230  0.3621       .
## sulf  0.1662  0.1588  0.5011  0.1978  0.4178 -0.6188  0.5820 -0.1796
## vild -0.2005 -0.1474  0.1386 -0.1084  0.0760 -0.9495  0.2354 -0.4854
##         sulf    vild
## acar -0.6095 -0.4552
## benf -0.7726 -0.5577
## metf -0.8482 -0.6896
## migl -0.8111 -0.5962
## piog -0.8361 -0.6569
## plac  0.2602  0.4505
## rosi -0.9427 -0.7683
## sita -0.4406 -0.2254
## sulf       . -0.0467
## vild -0.5677       .
## 
## Upper 95%-confidence limit:
##         acar    benf   metf   migl   piog    plac   rosi    sita    sulf
## acar       .  0.4054 0.5113 0.4438 0.4876 -0.6147 0.5983  0.0732 -0.1662
## benf  0.2497       . 0.4841 0.3908 0.4513 -0.6561 0.5627  0.0199 -0.1588
## metf -0.0622  0.0662      . 0.1046 0.0891 -0.9973 0.2203 -0.2654 -0.5011
## migl  0.2107  0.3133 0.4450      . 0.4123 -0.6952 0.5236 -0.0191 -0.1978
## piog  0.0094  0.1288 0.1845 0.1673      . -0.9178 0.2957 -0.2030 -0.4178
## plac  1.0401  1.1543 1.2309 1.1927 1.2151       . 1.2953  0.8230  0.6188
## rosi -0.1506 -0.0306 0.0449 0.0078 0.0249 -1.1084      . -0.3621 -0.5820
## sita  0.5879  0.6903 0.8228 0.7287 0.7899 -0.3170 0.9016       .  0.1796
## sulf  0.6095  0.7726 0.8482 0.8111 0.8361 -0.2602 0.9427  0.4406       .
## vild  0.4552  0.5577 0.6896 0.5962 0.6569 -0.4505 0.7683  0.2254  0.0467
##         vild
## acar  0.2005
## benf  0.1474
## metf -0.1386
## migl  0.1084
## piog -0.0760
## plac  0.9495
## rosi -0.2354
## sita  0.4854
## sulf  0.5677
## vild       .
## 
## Random effects model
## 
## Treatment estimate (sm = 'MD'):
##         acar    benf    metf    migl    piog    plac   rosi    sita
## acar       . -0.1106  0.2850  0.1079  0.2873 -0.8418 0.3917 -0.2718
## benf  0.1106       .  0.3956  0.2186  0.3979 -0.7311 0.5023 -0.1611
## metf -0.2850 -0.3956       . -0.1770  0.0023 -1.1268 0.1067 -0.5568
## migl -0.1079 -0.2186  0.1770       .  0.1794 -0.9497 0.2837 -0.3797
## piog -0.2873 -0.3979 -0.0023 -0.1794       . -1.1291 0.1044 -0.5591
## plac  0.8418  0.7311  1.1268  0.9497  1.1291       . 1.2335  0.5700
## rosi -0.3917 -0.5023 -0.1067 -0.2837 -0.1044 -1.2335      . -0.6635
## sita  0.2718  0.1611  0.5568  0.3797  0.5591 -0.5700 0.6635       .
## sulf  0.4252  0.3146  0.7102  0.5332  0.7125 -0.4166 0.8169  0.1534
## vild  0.1418  0.0311  0.4268  0.2497  0.4291 -0.7000 0.5335 -0.1300
##         sulf    vild
## acar -0.4252 -0.1418
## benf -0.3146 -0.0311
## metf -0.7102 -0.4268
## migl -0.5332 -0.2497
## piog -0.7125 -0.4291
## plac  0.4166  0.7000
## rosi -0.8169 -0.5335
## sita -0.1534  0.1300
## sulf       .  0.2834
## vild -0.2834       .
## 
## Lower 95%-confidence limit:
##         acar    benf    metf    migl    piog    plac    rosi    sita
## acar       . -0.8499 -0.2208 -0.5542 -0.3313 -1.3236 -0.1189 -1.1166
## benf -0.6286       . -0.2414 -0.5030 -0.3089 -1.2918 -0.1118 -1.0534
## metf -0.7908 -1.0327       . -0.7227 -0.4398 -1.4291 -0.2170 -1.3138
## migl -0.7701 -0.9402 -0.3686       . -0.4465 -1.4040 -0.2350 -1.2092
## piog -0.9059 -1.1048 -0.4444 -0.8052       . -1.5596 -0.3347 -1.3758
## plac  0.3600  0.1705  0.8244  0.4955  0.6986       .  0.9830 -0.1240
## rosi -0.9023 -1.1164 -0.4304 -0.8025 -0.5435 -1.4839       . -1.4013
## sita -0.5731 -0.7311 -0.2002 -0.4497 -0.2576 -1.2640 -0.0744       .
## sulf -0.0951 -0.4184  0.2491 -0.1220  0.1205 -0.8887  0.3521 -0.6859
## vild -0.7020 -0.8601 -0.3291 -0.5787 -0.3865 -1.3927 -0.2032 -1.1106
##         sulf    vild
## acar -0.9456 -0.9856
## benf -1.0476 -0.9224
## metf -1.1713 -1.1826
## migl -1.1883 -1.0781
## piog -1.3045 -1.2447
## plac -0.0556  0.0073
## rosi -1.2817 -1.2701
## sita -0.9928 -0.8506
## sulf       . -0.5549
## vild -1.1218       .
## 
## Upper 95%-confidence limit:
##        acar   benf   metf   migl   piog    plac   rosi   sita    sulf
## acar      . 0.6286 0.7908 0.7701 0.9059 -0.3600 0.9023 0.5731  0.0951
## benf 0.8499      . 1.0327 0.9402 1.1048 -0.1705 1.1164 0.7311  0.4184
## metf 0.2208 0.2414      . 0.3686 0.4444 -0.8244 0.4304 0.2002 -0.2491
## migl 0.5542 0.5030 0.7227      . 0.8052 -0.4955 0.8025 0.4497  0.1220
## piog 0.3313 0.3089 0.4398 0.4465      . -0.6986 0.5435 0.2576 -0.1205
## plac 1.3236 1.2918 1.4291 1.4040 1.5596       . 1.4839 1.2640  0.8887
## rosi 0.1189 0.1118 0.2170 0.2350 0.3347 -0.9830      . 0.0744 -0.3521
## sita 1.1166 1.0534 1.3138 1.2092 1.3758  0.1240 1.4013      .  0.6859
## sulf 0.9456 1.0476 1.1713 1.1883 1.3045  0.0556 1.2817 0.9928       .
## vild 0.9856 0.9224 1.1826 1.0781 1.2447 -0.0073 1.2701 0.8506  0.5549
##        vild
## acar 0.7020
## benf 0.8601
## metf 0.3291
## migl 0.5787
## piog 0.3865
## plac 1.3927
## rosi 0.2032
## sita 1.1106
## sulf 1.1218
## vild      .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.1087; I^2 = 81.4%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                     Q d.f.  p-value
## Total           96.99   18 < 0.0001
## Within designs  74.46   11 < 0.0001
## Between designs 22.53    7   0.0021
# Change printing order of treatments (placebo first)
trts <- c("plac", "acar", "benf", "metf", "migl", "piog",
"rosi", "sita", "sulf", "vild")
net3 <- netmeta(TE, seTE, treat1, treat2, studlab,
data=Senn2013, sm="MD",
seq=trts)
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
print(summary(net3), digits=2)
## Number of studies: k = 26
## Number of treatments: n = 10
## Number of pairwise comparisons: m = 28
## Number of designs: d = 15
## 
## Fixed effect model
## 
## Treatment estimate (sm = 'MD'):
##       plac  acar  benf  metf  migl  piog rosi  sita  sulf  vild
## plac     .  0.83  0.91  1.11  0.94  1.07 1.20  0.57  0.44  0.70
## acar -0.83     .  0.08  0.29  0.12  0.24 0.37 -0.26 -0.39 -0.13
## benf -0.91 -0.08     .  0.21  0.04  0.16 0.30 -0.34 -0.47 -0.21
## metf -1.11 -0.29 -0.21     . -0.17 -0.05 0.09 -0.54 -0.67 -0.41
## migl -0.94 -0.12 -0.04  0.17     .  0.12 0.26 -0.37 -0.50 -0.24
## piog -1.07 -0.24 -0.16  0.05 -0.12     . 0.14 -0.50 -0.63 -0.37
## rosi -1.20 -0.37 -0.30 -0.09 -0.26 -0.14    . -0.63 -0.76 -0.50
## sita -0.57  0.26  0.34  0.54  0.37  0.50 0.63     . -0.13  0.13
## sulf -0.44  0.39  0.47  0.67  0.50  0.63 0.76  0.13     .  0.26
## vild -0.70  0.13  0.21  0.41  0.24  0.37 0.50 -0.13 -0.26     .
## 
## Lower 95%-confidence limit:
##       plac  acar  benf  metf  migl  piog  rosi  sita  sulf  vild
## plac     .  0.61  0.66  1.00  0.70  0.92  1.11  0.32  0.26  0.45
## acar -1.04     . -0.25  0.06 -0.21 -0.01  0.15 -0.59 -0.61 -0.46
## benf -1.15 -0.41     . -0.07 -0.31 -0.13  0.03 -0.69 -0.77 -0.56
## metf -1.23 -0.51 -0.48     . -0.44 -0.18 -0.04 -0.82 -0.85 -0.69
## migl -1.19 -0.44 -0.39 -0.10     . -0.17 -0.01 -0.73 -0.81 -0.60
## piog -1.22 -0.49 -0.45 -0.09 -0.41     . -0.02 -0.79 -0.84 -0.66
## rosi -1.30 -0.60 -0.56 -0.22 -0.52 -0.30     . -0.90 -0.94 -0.77
## sita -0.82 -0.07 -0.02  0.27  0.02  0.20  0.36     . -0.44 -0.23
## sulf -0.62  0.17  0.16  0.50  0.20  0.42  0.58 -0.18     . -0.05
## vild -0.95 -0.20 -0.15  0.14 -0.11  0.08  0.24 -0.49 -0.57     .
## 
## Upper 95%-confidence limit:
##       plac  acar  benf metf migl piog rosi  sita  sulf  vild
## plac     .  1.04  1.15 1.23 1.19 1.22 1.30  0.82  0.62  0.95
## acar -0.61     .  0.41 0.51 0.44 0.49 0.60  0.07 -0.17  0.20
## benf -0.66  0.25     . 0.48 0.39 0.45 0.56  0.02 -0.16  0.15
## metf -1.00 -0.06  0.07    . 0.10 0.09 0.22 -0.27 -0.50 -0.14
## migl -0.70  0.21  0.31 0.44    . 0.41 0.52 -0.02 -0.20  0.11
## piog -0.92  0.01  0.13 0.18 0.17    . 0.30 -0.20 -0.42 -0.08
## rosi -1.11 -0.15 -0.03 0.04 0.01 0.02    . -0.36 -0.58 -0.24
## sita -0.32  0.59  0.69 0.82 0.73 0.79 0.90     .  0.18  0.49
## sulf -0.26  0.61  0.77 0.85 0.81 0.84 0.94  0.44     .  0.57
## vild -0.45  0.46  0.56 0.69 0.60 0.66 0.77  0.23  0.05     .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.1087; I^2 = 81.4%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                     Q d.f.  p-value
## Total           96.99   18 < 0.0001
## Within designs  74.46   11 < 0.0001
## Between designs 22.53    7   0.0021
data(Linde2015)

# Define order of treatments
trts <- c("TCA", "SSRI", "SNRI", "NRI",
"Low-dose SARI", "NaSSa", "rMAO-A", "Hypericum",
"Placebo")

# Outcome labels
outcomes <- c("Early response", "Early remission")

# (1) Early response
p1 <- pairwise(treat = list(treatment1, treatment2, treatment3),
event = list(resp1, resp2, resp3),
n = list(n1, n2, n3),
studlab = id, data = Linde2015, sm = "OR")
## Warning: Comparisons with missing TE / seTE or zero seTE will not be
## considered in network meta-analysis.
## Comparisons will not be considered in network meta-analysis:
##  TE seTE studlab treat1  treat2 event1  n1 event2  n2 incr allstudies
##  NA   NA      14    TCA    SSRI     NA  10     NA  11    0      FALSE
##  NA   NA      18    TCA Placebo     NA  73     NA  73    0      FALSE
##  NA   NA      21    TCA  rMAO-A     NA  46     NA  98    0      FALSE
##  NA   NA      27   SSRI Placebo     NA  80     NA  81    0      FALSE
##  NA   NA      51    TCA  rMAO-A     NA  71     NA  71    0      FALSE
##  NA   NA     130    TCA   NaSSa     NA  35     NA  36    0      FALSE
##  NA   NA     131   SSRI    SNRI     NA 697     NA 688    0      FALSE
##  NA   NA     130    TCA Placebo     NA  35     NA  34    0      FALSE
##  NA   NA     130  NaSSa Placebo     NA  36     NA  34    0      FALSE
net1 <- netmeta(p1,
comb.fixed = FALSE, comb.random = TRUE,
seq = trts, ref = "Placebo")
## Warning: Comparisons with missing TE / seTE or zero seTE not considered in
## network meta-analysis.
## Comparisons not considered in network meta-analysis:
##  studlab treat1  treat2 TE seTE
##       14    TCA    SSRI NA   NA
##       18    TCA Placebo NA   NA
##       21    TCA  rMAO-A NA   NA
##       27   SSRI Placebo NA   NA
##       51    TCA  rMAO-A NA   NA
##      130  NaSSa Placebo NA   NA
##      130    TCA   NaSSa NA   NA
##      130    TCA Placebo NA   NA
##      131   SSRI    SNRI NA   NA
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
# (2) Early remission
p2 <- pairwise(treat = list(treatment1, treatment2, treatment3),
event = list(remi1, remi2, remi3),
n = list(n1, n2, n3),
studlab = id, data = Linde2015, sm = "OR")
## Warning: Comparisons with missing TE / seTE or zero seTE will not be
## considered in network meta-analysis.
## Comparisons will not be considered in network meta-analysis:
##  TE seTE studlab        treat1  treat2 event1  n1 event2  n2 incr
##  NA   NA       1           TCA    SNRI     NA  75     NA  78  0.0
##  NA   NA      11           TCA    SSRI     NA 108     NA  99  0.0
##  NA   NA      14           TCA    SSRI     NA  10     NA  11  0.0
##  NA   NA      18           TCA Placebo     NA  73     NA  73  0.0
##  NA   NA      20           TCA    SSRI     NA  55     NA  51  0.0
##  NA   NA      26          SSRI Placebo     NA 314     NA 154  0.0
##  NA   NA      53          SSRI   NaSSa     NA 122     NA 121  0.0
##  NA   NA      56           TCA    SSRI     NA  92     NA 380  0.0
##  NA   NA      73     Hypericum Placebo     NA  55     NA  57  0.0
##  NA   NA      90           TCA    SSRI     NA  42     NA  42  0.0
##  NA   NA      96           TCA    SSRI      0  30      0  29  0.5
##  NA   NA     121 Low-dose SARI   NaSSa     NA  43     NA  40  0.0
##  NA   NA     130           TCA   NaSSa     NA  35     NA  36  0.0
##  NA   NA       1           TCA Placebo     NA  75     NA  76  0.0
##  NA   NA      11           TCA Placebo     NA 108     NA 101  0.0
##  NA   NA      53          SSRI Placebo     NA 122     NA 129  0.0
##  NA   NA     130           TCA Placebo     NA  35     NA  34  0.0
##  NA   NA       1          SNRI Placebo     NA  78     NA  76  0.0
##  NA   NA      11          SSRI Placebo     NA  99     NA 101  0.0
##  NA   NA      53         NaSSa Placebo     NA 121     NA 129  0.0
##  NA   NA     130         NaSSa Placebo     NA  36     NA  34  0.0
##  allstudies
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
net2 <- netmeta(p2,
comb.fixed = FALSE, comb.random = TRUE,
seq = trts, ref = "Placebo")
## Warning: Comparisons with missing TE / seTE or zero seTE not considered in
## network meta-analysis.
## Comparisons not considered in network meta-analysis:
##  studlab        treat1  treat2 TE seTE
##        1           TCA Placebo NA   NA
##        1           TCA    SNRI NA   NA
##        1          SNRI Placebo NA   NA
##       11          SSRI Placebo NA   NA
##       11           TCA Placebo NA   NA
##       11           TCA    SSRI NA   NA
##       14           TCA    SSRI NA   NA
##       18           TCA Placebo NA   NA
##       20           TCA    SSRI NA   NA
##       26          SSRI Placebo NA   NA
##       53         NaSSa Placebo NA   NA
##       53          SSRI   NaSSa NA   NA
##       53          SSRI Placebo NA   NA
##       56           TCA    SSRI NA   NA
##       73     Hypericum Placebo NA   NA
##       90           TCA    SSRI NA   NA
##       96           TCA    SSRI NA   NA
##      121 Low-dose SARI   NaSSa NA   NA
##      130         NaSSa Placebo NA   NA
##      130           TCA   NaSSa NA   NA
##      130           TCA Placebo NA   NA
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
# Partial order of treatment rankings (all five outcomes)
po <- netposet(netrank(net1, small.values = "bad"),
netrank(net2, small.values = "bad"),
outcomes = outcomes)


# Outcome labels
outcomes <- c("Early response", "Early remission",
"Lost to follow-up", "Lost to follow-up due to AEs",
"Adverse events (AEs)")

# (3) Loss to follow-up
p3 <- pairwise(treat = list(treatment1, treatment2, treatment3),
event = list(loss1, loss2, loss3),
n = list(n1, n2, n3),
studlab = id, data = Linde2015, sm = "OR")
## Warning: Comparisons with missing TE / seTE or zero seTE will not be
## considered in network meta-analysis.
## Comparisons will not be considered in network meta-analysis:
##  TE seTE studlab treat1  treat2 event1  n1 event2  n2 incr allstudies
##  NA   NA       9    TCA    SSRI     NA 363     NA 173    0      FALSE
##  NA   NA      14    TCA    SSRI     NA  10     NA  11    0      FALSE
##  NA   NA      48   SSRI Placebo     31 191     NA 189    0      FALSE
##  NA   NA      53   SSRI   NaSSa     NA 122     NA 121    0      FALSE
##  NA   NA      90    TCA    SSRI     NA  42     NA  42    0      FALSE
##  NA   NA     116   SSRI   NaSSa     NA  31     NA  31    0      FALSE
##  NA   NA     120    TCA    SSRI     NA 218     NA 109    0      FALSE
##  NA   NA      53   SSRI Placebo     NA 122     NA 129    0      FALSE
##  NA   NA      53  NaSSa Placebo     NA 121     NA 129    0      FALSE
net3 <- netmeta(p3,
comb.fixed = FALSE, comb.random = TRUE,
seq = trts, ref = "Placebo")
## Warning: Comparisons with missing TE / seTE or zero seTE not considered in
## network meta-analysis.
## Comparisons not considered in network meta-analysis:
##  studlab treat1  treat2 TE seTE
##        9    TCA    SSRI NA   NA
##       14    TCA    SSRI NA   NA
##       48   SSRI Placebo NA   NA
##       53  NaSSa Placebo NA   NA
##       53   SSRI   NaSSa NA   NA
##       53   SSRI Placebo NA   NA
##       90    TCA    SSRI NA   NA
##      116   SSRI   NaSSa NA   NA
##      120    TCA    SSRI NA   NA
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
# (4) Loss to follow-up due to adverse events
p4 <- pairwise(treat = list(treatment1, treatment2, treatment3),
event = list(loss.ae1, loss.ae2, loss.ae3),
n = list(n1, n2, n3),
studlab = id, data = subset(Linde2015, id != 55),
sm = "OR")
## Warning: Comparisons with missing TE / seTE or zero seTE will not be
## considered in network meta-analysis.
## Comparisons will not be considered in network meta-analysis:
##  TE seTE studlab        treat1  treat2 event1  n1 event2  n2 incr
##  NA   NA       7           TCA Placebo     NA  32     NA  31  0.0
##  NA   NA       9           TCA    SSRI     NA 363     NA 173  0.0
##  NA   NA      14           TCA    SSRI      0  10      0  11  0.5
##  NA   NA      30         NaSSa  rMAO-A     NA  38     NA  79  0.0
##  NA   NA      31           TCA Placebo     NA  90     NA  88  0.0
##  NA   NA      66     Hypericum Placebo      0  20      0  20  0.5
##  NA   NA      68     Hypericum Placebo      0  20      0  20  0.5
##  NA   NA      71     Hypericum Placebo      0  48      0  49  0.5
##  NA   NA      90           TCA    SSRI     NA  42     NA  42  0.0
##  NA   NA     114 Low-dose SARI   NaSSa      0  20      0  20  0.5
##  NA   NA     120           TCA    SSRI     NA 218     NA 109  0.0
##  NA   NA     128           TCA    SSRI     NA  50     NA  53  0.0
##  NA   NA     130           TCA   NaSSa     NA  35     NA  36  0.0
##  NA   NA     130           TCA Placebo     NA  35     NA  34  0.0
##  NA   NA     130         NaSSa Placebo     NA  36     NA  34  0.0
##  allstudies
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
net4 <- netmeta(p4,
comb.fixed = FALSE, comb.random = TRUE,
seq = trts, ref = "Placebo")
## Warning: Comparisons with missing TE / seTE or zero seTE not considered in
## network meta-analysis.
## Comparisons not considered in network meta-analysis:
##  studlab        treat1  treat2 TE seTE
##        7           TCA Placebo NA   NA
##        9           TCA    SSRI NA   NA
##       14           TCA    SSRI NA   NA
##       30         NaSSa  rMAO-A NA   NA
##       31           TCA Placebo NA   NA
##       66     Hypericum Placebo NA   NA
##       68     Hypericum Placebo NA   NA
##       71     Hypericum Placebo NA   NA
##       90           TCA    SSRI NA   NA
##      114 Low-dose SARI   NaSSa NA   NA
##      120           TCA    SSRI NA   NA
##      128           TCA    SSRI NA   NA
##      130         NaSSa Placebo NA   NA
##      130           TCA   NaSSa NA   NA
##      130           TCA Placebo NA   NA
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
# (5) Adverse events
p5 <- pairwise(treat = list(treatment1, treatment2, treatment3),
event = list(ae1, ae2, ae3),
n = list(n1, n2, n3),
studlab = id, data = Linde2015, sm = "OR")
## Warning: Comparisons with missing TE / seTE or zero seTE will not be
## considered in network meta-analysis.
## Comparisons will not be considered in network meta-analysis:
##  TE seTE studlab        treat1        treat2 event1  n1 event2  n2 incr
##  NA   NA       1           TCA          SNRI     NA  75     NA  78  0.0
##  NA   NA       4           TCA       Placebo     NA  35     NA  23  0.0
##  NA   NA       7           TCA       Placebo     NA  32     NA  31  0.0
##  NA   NA       9           TCA          SSRI     NA 363     NA 173  0.0
##  NA   NA      22           TCA          SSRI     NA  73     NA  71  0.0
##  NA   NA      24           TCA       Placebo     NA  31     NA  30  0.0
##  NA   NA      27          SSRI       Placebo     NA  80     NA  81  0.0
##  NA   NA      30         NaSSa        rMAO-A     NA  38     NA  79  0.0
##  NA   NA      31           TCA       Placebo     NA  90     NA  88  0.0
##  NA   NA      39         NaSSa       Placebo     NA  27     NA  25  0.0
##  NA   NA      49          SSRI       Placebo     NA 137     NA 140  0.0
##  NA   NA      51           TCA        rMAO-A     NA  71     NA  71  0.0
##  NA   NA      52           TCA        rMAO-A     NA  23     NA  30  0.0
##  NA   NA      53          SSRI         NaSSa     NA 122     NA 121  0.0
##  NA   NA      56           TCA          SSRI     NA  92     NA 380  0.0
##  NA   NA      66     Hypericum       Placebo      0  20      0  20  0.5
##  NA   NA      68     Hypericum       Placebo      0  20      0  20  0.5
##  NA   NA      83           TCA Low-dose SARI     NA  79     NA 112  0.0
##  NA   NA      88 Low-dose SARI         NaSSa     NA  61     NA  64  0.0
##  NA   NA      90           TCA          SSRI     NA  42     NA  42  0.0
##  NA   NA      91           TCA        rMAO-A     NA  64     NA  66  0.0
##  NA   NA     112          SSRI          SNRI     NA 178     NA 183  0.0
##  NA   NA     113           TCA Low-dose SARI     NA 114     NA 114  0.0
##  NA   NA     120           TCA          SSRI     NA 218     NA 109  0.0
##  NA   NA     128           TCA          SSRI     NA  50     NA  53  0.0
##  NA   NA     130           TCA         NaSSa     NA  35     NA  36  0.0
##  NA   NA     132           TCA          SNRI     NA  43     NA  45  0.0
##  NA   NA     135          SSRI           NRI     NA 298     NA 303  0.0
##  NA   NA       1           TCA       Placebo     NA  75     NA  76  0.0
##  NA   NA      53          SSRI       Placebo     NA 122     NA 129  0.0
##  NA   NA      83           TCA         NaSSa     NA  79     NA  36  0.0
##  NA   NA     130           TCA       Placebo     NA  35     NA  34  0.0
##  NA   NA       1          SNRI       Placebo     NA  78     NA  76  0.0
##  NA   NA      53         NaSSa       Placebo     NA 121     NA 129  0.0
##  NA   NA      83 Low-dose SARI         NaSSa     NA 112     NA  36  0.0
##  NA   NA     130         NaSSa       Placebo     NA  36     NA  34  0.0
##  allstudies
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
net5 <- netmeta(p5,
comb.fixed = FALSE, comb.random = TRUE,
seq = trts, ref = "Placebo")
## Warning: Comparisons with missing TE / seTE or zero seTE not considered in
## network meta-analysis.
## Comparisons not considered in network meta-analysis:
##  studlab        treat1        treat2 TE seTE
##        1           TCA       Placebo NA   NA
##        1           TCA          SNRI NA   NA
##        1          SNRI       Placebo NA   NA
##        4           TCA       Placebo NA   NA
##        7           TCA       Placebo NA   NA
##        9           TCA          SSRI NA   NA
##       22           TCA          SSRI NA   NA
##       24           TCA       Placebo NA   NA
##       27          SSRI       Placebo NA   NA
##       30         NaSSa        rMAO-A NA   NA
##       31           TCA       Placebo NA   NA
##       39         NaSSa       Placebo NA   NA
##       49          SSRI       Placebo NA   NA
##       51           TCA        rMAO-A NA   NA
##       52           TCA        rMAO-A NA   NA
##       53         NaSSa       Placebo NA   NA
##       53          SSRI         NaSSa NA   NA
##       53          SSRI       Placebo NA   NA
##       56           TCA          SSRI NA   NA
##       66     Hypericum       Placebo NA   NA
##       68     Hypericum       Placebo NA   NA
##       83 Low-dose SARI         NaSSa NA   NA
##       83           TCA Low-dose SARI NA   NA
##       83           TCA         NaSSa NA   NA
##       88 Low-dose SARI         NaSSa NA   NA
##       90           TCA          SSRI NA   NA
##       91           TCA        rMAO-A NA   NA
##      112          SSRI          SNRI NA   NA
##      113           TCA Low-dose SARI NA   NA
##      120           TCA          SSRI NA   NA
##      128           TCA          SSRI NA   NA
##      130         NaSSa       Placebo NA   NA
##      130           TCA         NaSSa NA   NA
##      130           TCA       Placebo NA   NA
##      132           TCA          SNRI NA   NA
##      135          SSRI           NRI NA   NA
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
# Partial order of treatment rankings (all five outcomes)
po.ranks <- netposet(netrank(net1, small.values = "bad"),
netrank(net2, small.values = "bad"),
netrank(net3, small.values = "good"),
netrank(net4, small.values = "good"),
netrank(net5, small.values = "good"),
outcomes = outcomes)

# Same result
po.nets <- netposet(net1, net2, net3, net4, net5,
small.values = c("bad", "bad", "good", "good", "good"),
outcomes = outcomes)
all.equal(po.ranks, po.nets)
## [1] "Component \"small.values\": target is NULL, current is character"
## [2] "Component \"call\": target, current do not match when deparsed"
# Print matrix with P-scores (random effects model)
po.nets$P.random
##               Early response Early remission Lost to follow-up
## Hypericum         0.89387883     0.745274702        0.84825521
## Low-dose SARI     0.72014426     0.615516715        0.90565348
## NaSSa             0.21275817     0.334605556        0.32869707
## NRI               0.44453371     0.551304613        0.05634402
## Placebo           0.09078155     0.006304086        0.41048763
## rMAO-A            0.15210079     0.319624853        0.59842793
## SNRI              0.68917883     0.768103792        0.46848342
## SSRI              0.61643623     0.511123290        0.44722161
## TCA               0.68018764     0.648142391        0.43642963
##               Lost to follow-up due to AEs Adverse events (AEs)
## Hypericum                        0.8207662           0.74877289
## Low-dose SARI                    0.7153234           0.88020103
## NaSSa                            0.1416704           0.69852753
## NRI                              0.0230363                   NA
## Placebo                          0.8354985           0.64096019
## rMAO-A                           0.8568193           0.47913934
## SNRI                             0.2770870           0.19361360
## SSRI                             0.4842401           0.32477927
## TCA                              0.3455589           0.03400613
po12 <- netposet(netrank(net1, small.values = "bad"),
netrank(net2, small.values = "bad"),
outcomes = outcomes[1:2])

# Scatter plot
oldpar <- par(pty = "s")
plot(po12)

par(oldpar)

# Example using ranking matrix with P-scores

# Ribassin-Majed L, Marguet S, Lee A.W., et al. (2017),
# What is the best treatment of locally advanced nasopharyngeal
# carcinoma? An individual patient data network meta-analysis.
# Journal of Clinical Oncology.
# 35, 498-505, DOI:10.1200/JCO.2016.67.4119

outcomes <- c("OS", "PFS", "LC", "DC")
treatments <- c("RT", "IC-RT", "IC-CRT", "CRT",
"CRT-AC", "RT-AC", "IC-RT-AC")

# P-scores (from Table 1)

pscore.os <- c(15, 33, 63, 70, 96, 28, 45) / 100
pscore.pfs <- c( 4, 46, 79, 52, 94, 36, 39) / 100
pscore.lc <- c( 9, 27, 47, 37, 82, 58, 90) / 100
pscore.dc <- c(16, 76, 95, 48, 72, 32, 10) / 100

pscore.matrix <- data.frame(pscore.os, pscore.pfs, pscore.lc, pscore.dc)
rownames(pscore.matrix) <- treatments
colnames(pscore.matrix) <- outcomes
pscore.matrix
##            OS  PFS   LC   DC
## RT       0.15 0.04 0.09 0.16
## IC-RT    0.33 0.46 0.27 0.76
## IC-CRT   0.63 0.79 0.47 0.95
## CRT      0.70 0.52 0.37 0.48
## CRT-AC   0.96 0.94 0.82 0.72
## RT-AC    0.28 0.36 0.58 0.32
## IC-RT-AC 0.45 0.39 0.90 0.10
po <- netposet(pscore.matrix)
po12 <- netposet(pscore.matrix[, 1:2])
po
##          RT IC-RT IC-CRT CRT CRT-AC RT-AC IC-RT-AC
## RT        0     0      0   0      0     0        0
## IC-RT     1     0      0   0      0     0        0
## IC-CRT    0     1      0   0      0     0        0
## CRT       1     0      0   0      0     0        0
## CRT-AC    0     0      0   1      0     1        0
## RT-AC     1     0      0   0      0     0        0
## IC-RT-AC  0     0      0   0      0     0        0
po12
##          RT IC-RT IC-CRT CRT CRT-AC RT-AC IC-RT-AC
## RT        0     0      0   0      0     0        0
## IC-RT     0     0      0   0      0     1        0
## IC-CRT    0     1      0   0      0     0        1
## CRT       0     1      0   0      0     0        1
## CRT-AC    0     0      1   1      0     0        0
## RT-AC     1     0      0   0      0     0        0
## IC-RT-AC  0     0      0   0      0     1        0
oldpar <- par(pty = "s")
plot(po12)

par(oldpar)
data(Senn2013)
net1 <- netmeta(TE, seTE, treat1, treat2, studlab,
data=Senn2013, sm="MD")
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
net2 <- netmeta(TE, seTE, treat1, treat2, studlab,
data=Senn2013, sm="MD",
comb.fixed=FALSE, comb.random=TRUE)
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
net3 <- netmeta(TE, seTE, treat1, treat2, studlab,
data=Senn2013, sm="MD",comb.random=TRUE)
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
nr1 <- netrank(net1)
nr1
##      P-score
## rosi  0.9789
## metf  0.8513
## piog  0.7686
## migl  0.6200
## benf  0.5727
## acar  0.4792
## vild  0.3512
## sita  0.2386
## sulf  0.1395
## plac  0.0000
print(nr1, sort=FALSE)
##      P-score
## acar  0.4792
## benf  0.5727
## metf  0.8513
## migl  0.6200
## piog  0.7686
## plac  0.0000
## rosi  0.9789
## sita  0.2386
## sulf  0.1395
## vild  0.3512
nr2 <- netrank(net2)
nr2
##      P-score
## rosi  0.8934
## metf  0.7818
## piog  0.7746
## migl  0.6137
## acar  0.5203
## benf  0.4358
## vild  0.4232
## sita  0.3331
## sulf  0.2103
## plac  0.0139
print(nr2, sort=FALSE)
##      P-score
## acar  0.5203
## benf  0.4358
## metf  0.7818
## migl  0.6137
## piog  0.7746
## plac  0.0139
## rosi  0.8934
## sita  0.3331
## sulf  0.2103
## vild  0.4232
nr3 <- netrank(net3)
nr3
##      P-score (fixed) P-score (random)
## rosi          0.9789           0.8934
## metf          0.8513           0.7818
## piog          0.7686           0.7746
## migl          0.6200           0.6137
## acar          0.4792           0.5203
## benf          0.5727           0.4358
## vild          0.3512           0.4232
## sita          0.2386           0.3331
## sulf          0.1395           0.2103
## plac          0.0000           0.0139
print(nr3, sort="fixed")
##      P-score (fixed) P-score (random)
## rosi          0.9789           0.8934
## metf          0.8513           0.7818
## piog          0.7686           0.7746
## migl          0.6200           0.6137
## benf          0.5727           0.4358
## acar          0.4792           0.5203
## vild          0.3512           0.4232
## sita          0.2386           0.3331
## sulf          0.1395           0.2103
## plac          0.0000           0.0139
print(nr3, sort=FALSE)
##      P-score (fixed) P-score (random)
## acar          0.4792           0.5203
## benf          0.5727           0.4358
## metf          0.8513           0.7818
## migl          0.6200           0.6137
## piog          0.7686           0.7746
## plac          0.0000           0.0139
## rosi          0.9789           0.8934
## sita          0.2386           0.3331
## sulf          0.1395           0.2103
## vild          0.3512           0.4232
data(Woods2010)

p1 <- pairwise(treatment, event = r, n = N,
studlab = author, data = Woods2010, sm = "OR")

net1 <- netmeta(p1)

print(netsplit(net1), digits = 2)
## Fixed effect model: 
## 
##              comparison k prop  nma direct indir.  RoR     z  p-value
##     Fluticasone:Placebo 1 0.96 1.81   1.83   1.49 1.23  0.06   0.9486
##  Fluticasone:Salmeterol 1 0.86 0.77   0.75   0.86 0.88 -0.06   0.9485
##         Fluticasone:SFC 1 1.00 0.52   0.52      .    .     .        .
##      Placebo:Salmeterol 3 1.00 0.42   0.42      .    .     .        .
##             Placebo:SFC 1 0.98 0.29   0.28   0.40 0.72 -0.06   0.9486
##          Salmeterol:SFC 1 0.90 0.68   0.69   0.57 1.21  0.06   0.9485
## 
## Legend:
##  comparison - Treatment comparison
##  k          - Number of studies providing direct evidence
##  prop       - Direct evidence proportion
##  nma        - Estimated treatment effect (OR) in network meta-analysis
##  direct     - Estimated treatment effect (OR) derived from direct evidence
##  indir.     - Estimated treatment effect (OR) derived from indirect evidence
##  RoR        - Ratio of Ratios (direct versus indirect)
##  z          - z-value of test for disagreement (direct versus indirect)
##  p-value    - p-value of test for disagreement (direct versus indirect)
print(netsplit(net1), digits = 2,
backtransf = FALSE, comb.random = TRUE)
## Fixed effect model: 
## 
##              comparison k prop   nma direct indir.  Diff     z  p-value
##     Fluticasone:Placebo 1 0.96  0.60   0.60   0.40  0.20  0.06   0.9486
##  Fluticasone:Salmeterol 1 0.86 -0.27  -0.28  -0.15 -0.13 -0.06   0.9485
##         Fluticasone:SFC 1 1.00 -0.65  -0.65      .     .     .        .
##      Placebo:Salmeterol 3 1.00 -0.86  -0.86      .     .     .        .
##             Placebo:SFC 1 0.98 -1.25  -1.26  -0.93 -0.33 -0.06   0.9486
##          Salmeterol:SFC 1 0.90 -0.39  -0.37  -0.56  0.19  0.06   0.9485
## 
## Random effects model: 
## 
##              comparison k prop   nma direct indir.  Diff     z  p-value
##     Fluticasone:Placebo 1 0.96  0.60   0.60   0.40  0.20  0.06   0.9486
##  Fluticasone:Salmeterol 1 0.86 -0.27  -0.28  -0.15 -0.13 -0.06   0.9485
##         Fluticasone:SFC 1 1.00 -0.65  -0.65      .     .     .        .
##      Placebo:Salmeterol 3 1.00 -0.86  -0.86      .     .     .        .
##             Placebo:SFC 1 0.98 -1.25  -1.26  -0.93 -0.33 -0.06   0.9486
##          Salmeterol:SFC 1 0.90 -0.39  -0.37  -0.56  0.19  0.06   0.9485
## 
## Legend:
##  comparison - Treatment comparison
##  k          - Number of studies providing direct evidence
##  prop       - Direct evidence proportion
##  nma        - Estimated treatment effect (logOR) in network meta-analysis
##  direct     - Estimated treatment effect (logOR) derived from direct evidence
##  indir.     - Estimated treatment effect (logOR) derived from indirect evidence
##  Diff       - Difference between direct and indirect treatment estimates
##  z          - z-value of test for disagreement (direct versus indirect)
##  p-value    - p-value of test for disagreement (direct versus indirect)
data(Senn2013)
net2 <- netmeta(TE, seTE, treat1, treat2, studlab, data = Senn2013,
comb.random = TRUE)
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
print(netsplit(net2), digits = 2)
## Fixed effect model: 
## 
##  comparison k prop   nma direct indir.  Diff     z  p-value
##   acar:benf 0 0.00 -0.08      .  -0.08     .     .        .
##   acar:metf 1 0.10 -0.29  -0.20  -0.30  0.10  0.26   0.7981
##   acar:migl 0 0.00 -0.12      .  -0.12     .     .        .
##   acar:piog 0 0.00 -0.24      .  -0.24     .     .        .
##   acar:plac 2 0.63  0.83   0.82   0.84 -0.03 -0.12   0.9030
##   acar:rosi 0 0.00 -0.37      .  -0.37     .     .        .
##   acar:sita 0 0.00  0.26      .   0.26     .     .        .
##   acar:sulf 1 0.53  0.39   0.40   0.37  0.03  0.11   0.9088
##   acar:vild 0 0.00  0.13      .   0.13     .     .        .
##   benf:metf 0 0.00 -0.21      .  -0.21     .     .        .
##   benf:migl 0 0.00 -0.04      .  -0.04     .     .        .
##   benf:piog 0 0.00 -0.16      .  -0.16     .     .        .
##   benf:plac 2 1.00  0.91   0.91      .     .     .        .
##   benf:rosi 0 0.00 -0.30      .  -0.30     .     .        .
##   benf:sita 0 0.00  0.34      .   0.34     .     .        .
##   benf:sulf 0 0.00  0.47      .   0.47     .     .        .
##   benf:vild 0 0.00  0.21      .   0.21     .     .        .
##   metf:migl 0 0.00  0.17      .   0.17     .     .        .
##   metf:piog 1 0.68  0.05   0.16  -0.19  0.35  2.32   0.0201
##   metf:plac 4 0.58  1.11   1.15   1.06  0.09  0.76   0.4489
##   metf:rosi 2 0.18 -0.09  -0.07  -0.09  0.02  0.10   0.9204
##   metf:sita 0 0.00  0.54      .   0.54     .     .        .
##   metf:sulf 1 0.56  0.67   0.37   1.06 -0.69 -3.87   0.0001
##   metf:vild 0 0.00  0.41      .   0.41     .     .        .
##   migl:piog 0 0.00 -0.12      .  -0.12     .     .        .
##   migl:plac 3 1.00  0.94   0.94      .     .     .        .
##   migl:rosi 0 0.00 -0.26      .  -0.26     .     .        .
##   migl:sita 0 0.00  0.37      .   0.37     .     .        .
##   migl:sulf 0 0.00  0.50      .   0.50     .     .        .
##   migl:vild 0 0.00  0.24      .   0.24     .     .        .
##   piog:plac 1 0.36  1.07   1.30   0.94  0.36  2.30   0.0215
##   piog:rosi 1 0.20 -0.14  -0.10  -0.14  0.04  0.22   0.8289
##   piog:sita 0 0.00  0.50      .   0.50     .     .        .
##   piog:sulf 0 0.00  0.63      .   0.63     .     .        .
##   piog:vild 0 0.00  0.37      .   0.37     .     .        .
##   plac:rosi 6 0.83 -1.20  -1.15  -1.47  0.32  2.50   0.0125
##   plac:sita 1 1.00 -0.57  -0.57      .     .     .        .
##   plac:sulf 0 0.00 -0.44      .  -0.44     .     .        .
##   plac:vild 1 1.00 -0.70  -0.70      .     .     .        .
##   rosi:sita 0 0.00  0.63      .   0.63     .     .        .
##   rosi:sulf 1 0.41  0.76   1.20   0.46  0.74  3.97 < 0.0001
##   rosi:vild 0 0.00  0.50      .   0.50     .     .        .
##   sita:sulf 0 0.00  0.13      .   0.13     .     .        .
##   sita:vild 0 0.00 -0.13      .  -0.13     .     .        .
##   sulf:vild 0 0.00 -0.26      .  -0.26     .     .        .
## 
## Random effects model: 
## 
##  comparison k prop   nma direct indir.  Diff     z  p-value
##   acar:benf 0 0.00  0.11      .   0.11     .     .        .
##   acar:metf 1 0.28 -0.28  -0.20  -0.32  0.12  0.21   0.8368
##   acar:migl 0 0.00 -0.11      .  -0.11     .     .        .
##   acar:piog 0 0.00 -0.29      .  -0.29     .     .        .
##   acar:plac 2 0.65  0.84   0.86   0.81  0.04  0.08   0.9338
##   acar:rosi 0 0.00 -0.39      .  -0.39     .     .        .
##   acar:sita 0 0.00  0.27      .   0.27     .     .        .
##   acar:sulf 1 0.53  0.43   0.40   0.45 -0.05 -0.10   0.9195
##   acar:vild 0 0.00  0.14      .   0.14     .     .        .
##   benf:metf 0 0.00 -0.40      .  -0.40     .     .        .
##   benf:migl 0 0.00 -0.22      .  -0.22     .     .        .
##   benf:piog 0 0.00 -0.40      .  -0.40     .     .        .
##   benf:plac 2 1.00  0.73   0.73      .     .     .        .
##   benf:rosi 0 0.00 -0.50      .  -0.50     .     .        .
##   benf:sita 0 0.00  0.16      .   0.16     .     .        .
##   benf:sulf 0 0.00  0.31      .   0.31     .     .        .
##   benf:vild 0 0.00  0.03      .   0.03     .     .        .
##   metf:migl 0 0.00  0.18      .   0.18     .     .        .
##   metf:piog 1 0.44 -0.00   0.16  -0.13  0.29  0.64   0.5245
##   metf:plac 4 0.56  1.13   1.18   1.06  0.12  0.40   0.6912
##   metf:rosi 2 0.34 -0.11  -0.07  -0.12  0.05  0.15   0.8771
##   metf:sita 0 0.00  0.56      .   0.56     .     .        .
##   metf:sulf 1 0.45  0.71   0.37   0.99 -0.62 -1.31   0.1900
##   metf:vild 0 0.00  0.43      .   0.43     .     .        .
##   migl:piog 0 0.00 -0.18      .  -0.18     .     .        .
##   migl:plac 3 1.00  0.95   0.95      .     .     .        .
##   migl:rosi 0 0.00 -0.28      .  -0.28     .     .        .
##   migl:sita 0 0.00  0.38      .   0.38     .     .        .
##   migl:sulf 0 0.00  0.53      .   0.53     .     .        .
##   migl:vild 0 0.00  0.25      .   0.25     .     .        .
##   piog:plac 1 0.39  1.13   1.30   1.02  0.28  0.62   0.5368
##   piog:rosi 1 0.35 -0.10  -0.10  -0.11  0.01  0.01   0.9885
##   piog:sita 0 0.00  0.56      .   0.56     .     .        .
##   piog:sulf 0 0.00  0.71      .   0.71     .     .        .
##   piog:vild 0 0.00  0.43      .   0.43     .     .        .
##   plac:rosi 6 0.76 -1.23  -1.18  -1.40  0.22  0.74   0.4587
##   plac:sita 1 1.00 -0.57  -0.57      .     .     .        .
##   plac:sulf 0 0.00 -0.42      .  -0.42     .     .        .
##   plac:vild 1 1.00 -0.70  -0.70      .     .     .        .
##   rosi:sita 0 0.00  0.66      .   0.66     .     .        .
##   rosi:sulf 1 0.43  0.82   1.20   0.52  0.68  1.42   0.1565
##   rosi:vild 0 0.00  0.53      .   0.53     .     .        .
##   sita:sulf 0 0.00  0.15      .   0.15     .     .        .
##   sita:vild 0 0.00 -0.13      .  -0.13     .     .        .
##   sulf:vild 0 0.00 -0.28      .  -0.28     .     .        .
## 
## Legend:
##  comparison - Treatment comparison
##  k          - Number of studies providing direct evidence
##  prop       - Direct evidence proportion
##  nma        - Estimated treatment effect in network meta-analysis
##  direct     - Estimated treatment effect derived from direct evidence
##  indir.     - Estimated treatment effect derived from indirect evidence
##  Diff       - Difference between direct and indirect treatment estimates
##  z          - z-value of test for disagreement (direct versus indirect)
##  p-value    - p-value of test for disagreement (direct versus indirect)
# Layout of Puhan et al. (2014), Table 1
print(netsplit(net2), digits = 2, ci = TRUE, test = FALSE)
## Fixed effect model: 
## 
##  comparison k prop   nma         95%-CI direct         95%-CI indir.         95%-CI
##   acar:benf 0 0.00 -0.08 [-0.41;  0.25]      .              .  -0.08 [-0.41;  0.25]
##   acar:metf 1 0.10 -0.29 [-0.51; -0.06]  -0.20 [-0.90;  0.50]  -0.30 [-0.53; -0.06]
##   acar:migl 0 0.00 -0.12 [-0.44;  0.21]      .              .  -0.12 [-0.44;  0.21]
##   acar:piog 0 0.00 -0.24 [-0.49;  0.01]      .              .  -0.24 [-0.49;  0.01]
##   acar:plac 2 0.63  0.83 [ 0.61;  1.04]   0.82 [ 0.55;  1.09]   0.84 [ 0.50;  1.19]
##   acar:rosi 0 0.00 -0.37 [-0.60; -0.15]      .              .  -0.37 [-0.60; -0.15]
##   acar:sita 0 0.00  0.26 [-0.07;  0.59]      .              .   0.26 [-0.07;  0.59]
##   acar:sulf 1 0.53  0.39 [ 0.17;  0.61]   0.40 [ 0.10;  0.70]   0.37 [ 0.05;  0.70]
##   acar:vild 0 0.00  0.13 [-0.20;  0.46]      .              .   0.13 [-0.20;  0.46]
##   benf:metf 0 0.00 -0.21 [-0.48;  0.07]      .              .  -0.21 [-0.48;  0.07]
##   benf:migl 0 0.00 -0.04 [-0.39;  0.31]      .              .  -0.04 [-0.39;  0.31]
##   benf:piog 0 0.00 -0.16 [-0.45;  0.13]      .              .  -0.16 [-0.45;  0.13]
##   benf:plac 2 1.00  0.91 [ 0.66;  1.15]   0.91 [ 0.66;  1.15]      .              .
##   benf:rosi 0 0.00 -0.30 [-0.56; -0.03]      .              .  -0.30 [-0.56; -0.03]
##   benf:sita 0 0.00  0.34 [-0.02;  0.69]      .              .   0.34 [-0.02;  0.69]
##   benf:sulf 0 0.00  0.47 [ 0.16;  0.77]      .              .   0.47 [ 0.16;  0.77]
##   benf:vild 0 0.00  0.21 [-0.15;  0.56]      .              .   0.21 [-0.15;  0.56]
##   metf:migl 0 0.00  0.17 [-0.10;  0.44]      .              .   0.17 [-0.10;  0.44]
##   metf:piog 1 0.68  0.05 [-0.09;  0.18]   0.16 [-0.01;  0.33]  -0.19 [-0.43;  0.05]
##   metf:plac 4 0.58  1.11 [ 1.00;  1.23]   1.15 [ 1.00;  1.31]   1.06 [ 0.88;  1.24]
##   metf:rosi 2 0.18 -0.09 [-0.22;  0.04]  -0.07 [-0.39;  0.24]  -0.09 [-0.24;  0.06]
##   metf:sita 0 0.00  0.54 [ 0.27;  0.82]      .              .   0.54 [ 0.27;  0.82]
##   metf:sulf 1 0.56  0.67 [ 0.50;  0.85]   0.37 [ 0.14;  0.60]   1.06 [ 0.80;  1.32]
##   metf:vild 0 0.00  0.41 [ 0.14;  0.69]      .              .   0.41 [ 0.14;  0.69]
##   migl:piog 0 0.00 -0.12 [-0.41;  0.17]      .              .  -0.12 [-0.41;  0.17]
##   migl:plac 3 1.00  0.94 [ 0.70;  1.19]   0.94 [ 0.70;  1.19]      .              .
##   migl:rosi 0 0.00 -0.26 [-0.52;  0.01]      .              .  -0.26 [-0.52;  0.01]
##   migl:sita 0 0.00  0.37 [ 0.02;  0.73]      .              .   0.37 [ 0.02;  0.73]
##   migl:sulf 0 0.00  0.50 [ 0.20;  0.81]      .              .   0.50 [ 0.20;  0.81]
##   migl:vild 0 0.00  0.24 [-0.11;  0.60]      .              .   0.24 [-0.11;  0.60]
##   piog:plac 1 0.36  1.07 [ 0.92;  1.22]   1.30 [ 1.05;  1.55]   0.94 [ 0.75;  1.12]
##   piog:rosi 1 0.20 -0.14 [-0.30;  0.02]  -0.10 [-0.46;  0.26]  -0.14 [-0.32;  0.03]
##   piog:sita 0 0.00  0.50 [ 0.20;  0.79]      .              .   0.50 [ 0.20;  0.79]
##   piog:sulf 0 0.00  0.63 [ 0.42;  0.84]      .              .   0.63 [ 0.42;  0.84]
##   piog:vild 0 0.00  0.37 [ 0.08;  0.66]      .              .   0.37 [ 0.08;  0.66]
##   plac:rosi 6 0.83 -1.20 [-1.30; -1.11]  -1.15 [-1.25; -1.05]  -1.47 [-1.69; -1.24]
##   plac:sita 1 1.00 -0.57 [-0.82; -0.32]  -0.57 [-0.82; -0.32]      .              .
##   plac:sulf 0 0.00 -0.44 [-0.62; -0.26]      .              .  -0.44 [-0.62; -0.26]
##   plac:vild 1 1.00 -0.70 [-0.95; -0.45]  -0.70 [-0.95; -0.45]      .              .
##   rosi:sita 0 0.00  0.63 [ 0.36;  0.90]      .              .   0.63 [ 0.36;  0.90]
##   rosi:sulf 1 0.41  0.76 [ 0.58;  0.94]   1.20 [ 0.92;  1.48]   0.46 [ 0.22;  0.69]
##   rosi:vild 0 0.00  0.50 [ 0.24;  0.77]      .              .   0.50 [ 0.24;  0.77]
##   sita:sulf 0 0.00  0.13 [-0.18;  0.44]      .              .   0.13 [-0.18;  0.44]
##   sita:vild 0 0.00 -0.13 [-0.49;  0.23]      .              .  -0.13 [-0.49;  0.23]
##   sulf:vild 0 0.00 -0.26 [-0.57;  0.05]      .              .  -0.26 [-0.57;  0.05]
## 
## Random effects model: 
## 
##  comparison k prop   nma         95%-CI direct         95%-CI indir.         95%-CI
##   acar:benf 0 0.00  0.11 [-0.63;  0.85]      .              .   0.11 [-0.63;  0.85]
##   acar:metf 1 0.28 -0.28 [-0.79;  0.22]  -0.20 [-1.15;  0.75]  -0.32 [-0.91;  0.28]
##   acar:migl 0 0.00 -0.11 [-0.77;  0.55]      .              .  -0.11 [-0.77;  0.55]
##   acar:piog 0 0.00 -0.29 [-0.91;  0.33]      .              .  -0.29 [-0.91;  0.33]
##   acar:plac 2 0.65  0.84 [ 0.36;  1.32]   0.86 [ 0.26;  1.45]   0.81 [ 0.00;  1.63]
##   acar:rosi 0 0.00 -0.39 [-0.90;  0.12]      .              .  -0.39 [-0.90;  0.12]
##   acar:sita 0 0.00  0.27 [-0.57;  1.12]      .              .   0.27 [-0.57;  1.12]
##   acar:sulf 1 0.53  0.43 [-0.10;  0.95]   0.40 [-0.31;  1.11]   0.45 [-0.31;  1.21]
##   acar:vild 0 0.00  0.14 [-0.70;  0.99]      .              .   0.14 [-0.70;  0.99]
##   benf:metf 0 0.00 -0.40 [-1.03;  0.24]      .              .  -0.40 [-1.03;  0.24]
##   benf:migl 0 0.00 -0.22 [-0.94;  0.50]      .              .  -0.22 [-0.94;  0.50]
##   benf:piog 0 0.00 -0.40 [-1.10;  0.31]      .              .  -0.40 [-1.10;  0.31]
##   benf:plac 2 1.00  0.73 [ 0.17;  1.29]   0.73 [ 0.17;  1.29]      .              .
##   benf:rosi 0 0.00 -0.50 [-1.12;  0.11]      .              .  -0.50 [-1.12;  0.11]
##   benf:sita 0 0.00  0.16 [-0.73;  1.05]      .              .   0.16 [-0.73;  1.05]
##   benf:sulf 0 0.00  0.31 [-0.42;  1.05]      .              .   0.31 [-0.42;  1.05]
##   benf:vild 0 0.00  0.03 [-0.86;  0.92]      .              .   0.03 [-0.86;  0.92]
##   metf:migl 0 0.00  0.18 [-0.37;  0.72]      .              .   0.18 [-0.37;  0.72]
##   metf:piog 1 0.44 -0.00 [-0.44;  0.44]   0.16 [-0.51;  0.83]  -0.13 [-0.72;  0.46]
##   metf:plac 4 0.56  1.13 [ 0.82;  1.43]   1.18 [ 0.78;  1.58]   1.06 [ 0.60;  1.51]
##   metf:rosi 2 0.34 -0.11 [-0.43;  0.22]  -0.07 [-0.63;  0.49]  -0.12 [-0.52;  0.27]
##   metf:sita 0 0.00  0.56 [-0.20;  1.31]      .              .   0.56 [-0.20;  1.31]
##   metf:sulf 1 0.45  0.71 [ 0.25;  1.17]   0.37 [-0.32;  1.06]   0.99 [ 0.37;  1.61]
##   metf:vild 0 0.00  0.43 [-0.33;  1.18]      .              .   0.43 [-0.33;  1.18]
##   migl:piog 0 0.00 -0.18 [-0.81;  0.45]      .              .  -0.18 [-0.81;  0.45]
##   migl:plac 3 1.00  0.95 [ 0.50;  1.40]   0.95 [ 0.50;  1.40]      .              .
##   migl:rosi 0 0.00 -0.28 [-0.80;  0.23]      .              .  -0.28 [-0.80;  0.23]
##   migl:sita 0 0.00  0.38 [-0.45;  1.21]      .              .   0.38 [-0.45;  1.21]
##   migl:sulf 0 0.00  0.53 [-0.12;  1.19]      .              .   0.53 [-0.12;  1.19]
##   migl:vild 0 0.00  0.25 [-0.58;  1.08]      .              .   0.25 [-0.58;  1.08]
##   piog:plac 1 0.39  1.13 [ 0.70;  1.56]   1.30 [ 0.61;  1.99]   1.02 [ 0.47;  1.57]
##   piog:rosi 1 0.35 -0.10 [-0.54;  0.33]  -0.10 [-0.84;  0.64]  -0.11 [-0.65;  0.44]
##   piog:sita 0 0.00  0.56 [-0.26;  1.38]      .              .   0.56 [-0.26;  1.38]
##   piog:sulf 0 0.00  0.71 [ 0.12;  1.30]      .              .   0.71 [ 0.12;  1.30]
##   piog:vild 0 0.00  0.43 [-0.39;  1.24]      .              .   0.43 [-0.39;  1.24]
##   plac:rosi 6 0.76 -1.23 [-1.48; -0.98]  -1.18 [-1.47; -0.89]  -1.40 [-1.91; -0.89]
##   plac:sita 1 1.00 -0.57 [-1.26;  0.12]  -0.57 [-1.26;  0.12]      .              .
##   plac:sulf 0 0.00 -0.42 [-0.89;  0.06]      .              .  -0.42 [-0.89;  0.06]
##   plac:vild 1 1.00 -0.70 [-1.39; -0.01]  -0.70 [-1.39; -0.01]      .              .
##   rosi:sita 0 0.00  0.66 [-0.07;  1.40]      .              .   0.66 [-0.07;  1.40]
##   rosi:sulf 1 0.43  0.82 [ 0.35;  1.28]   1.20 [ 0.50;  1.90]   0.52 [-0.10;  1.14]
##   rosi:vild 0 0.00  0.53 [-0.20;  1.27]      .              .   0.53 [-0.20;  1.27]
##   sita:sulf 0 0.00  0.15 [-0.69;  0.99]      .              .   0.15 [-0.69;  0.99]
##   sita:vild 0 0.00 -0.13 [-1.11;  0.85]      .              .  -0.13 [-1.11;  0.85]
##   sulf:vild 0 0.00 -0.28 [-1.12;  0.55]      .              .  -0.28 [-1.12;  0.55]
## 
## Legend:
##  comparison - Treatment comparison
##  k          - Number of studies providing direct evidence
##  prop       - Direct evidence proportion
##  nma        - Estimated treatment effect in network meta-analysis
##  direct     - Estimated treatment effect derived from direct evidence
##  indir.     - Estimated treatment effect derived from indirect evidence
# Example using continuous outcomes (internal call of function metacont)
data(parkinson)

# Transform data from arm-based format to contrast-based format
p1 <- pairwise(list(Treatment1, Treatment2, Treatment3),
n=list(n1, n2, n3),
mean=list(y1, y2, y3),
sd=list(sd1, sd2, sd3),
data=parkinson, studlab=Study)
p1
##      TE      seTE studlab treat1 treat2  n1 mean1  sd1  n2 mean2  sd2
## 1  0.31 0.6680897       1      1      3  54 -1.22 3.70  95 -1.53 4.28
## 2  1.70 0.3826406       2      1      2 172 -0.70 3.70 173 -2.40 3.40
## 3  2.30 0.7177460       3      1      2  76 -0.30 4.40  71 -2.60 4.30
## 4  0.90 0.6949881       3      1      4  76 -0.30 4.40  81 -1.20 4.30
## 5 -1.40 0.6990666       3      2      4  71 -2.60 4.30  81 -1.20 4.30
## 6  0.35 0.4419417       4      3      4 128 -0.24 3.00  72 -0.59 3.00
## 7 -0.55 0.5551146       5      3      4  80 -0.73 3.00  46 -0.18 3.00
## 8  0.30 0.2742763       6      4      5 137 -2.20 2.31 131 -2.50 2.18
## 9  0.30 0.3200872       7      4      5 154 -1.80 2.48 143 -2.10 2.99
# Conduct network meta-analysis
net1 <- netmeta(p1)
net1
## Original data (with adjusted standard errors for multi-arm studies):
## 
##   treat1 treat2    TE   seTE seTE.adj narms multiarm
## 1      1      3  0.31 0.6681   0.6681     2         
## 2      1      2  1.70 0.3826   0.3826     2         
## 3      1      2  2.30 0.7177   0.8976     3        *
## 3      1      4  0.90 0.6950   0.8404     3        *
## 3      2      4 -1.40 0.6991   0.8497     3        *
## 4      3      4  0.35 0.4419   0.4419     2         
## 5      3      4 -0.55 0.5551   0.5551     2         
## 6      4      5  0.30 0.2743   0.2743     2         
## 7      4      5  0.30 0.3201   0.3201     2         
## 
## Number of treatment arms (by study):
##   narms
## 1     2
## 2     2
## 3     3
## 4     2
## 5     2
## 6     2
## 7     2
## 
## Results (fixed effect model):
## 
##   treat1 treat2      MD              95%-CI    Q leverage
## 1      1      3  0.4781  [-0.4757;  1.4319] 0.06     0.53
## 2      1      2  1.8116  [ 1.1595;  2.4636] 0.08     0.76
## 3      1      2  1.8116  [ 1.1595;  2.4636] 0.30     0.14
## 3      1      4  0.5240  [-0.4141;  1.4621] 0.20     0.32
## 3      2      4 -1.2876  [-2.3110; -0.2641] 0.02     0.38
## 4      3      4  0.0459  [-0.5877;  0.6795] 0.47     0.54
## 5      3      4  0.0459  [-0.5877;  0.6795] 1.15     0.34
## 6      4      5  0.3000  [-0.1082;  0.7082] 0.00     0.58
## 7      4      5  0.3000  [-0.1082;  0.7082] 0.00     0.42
## 
## Number of studies: k = 7
## Number of treatments: n = 5
## Number of pairwise comparisons: m = 9
## Number of designs: d = 5
## 
## Fixed effect model
## 
## Treatment estimate (sm = 'MD'):
##         1      2       3       4       5
## 1       . 1.8116  0.4781  0.5240  0.8240
## 2 -1.8116      . -1.3334 -1.2876 -0.9876
## 3 -0.4781 1.3334       .  0.0459  0.3459
## 4 -0.5240 1.2876 -0.0459       .  0.3000
## 5 -0.8240 0.9876 -0.3459 -0.3000       .
## 
## Lower 95%-confidence limit:
##         1       2       3       4       5
## 1       .  1.1595 -0.4757 -0.4141 -0.1991
## 2 -2.4636       . -2.3972 -2.3110 -2.0894
## 3 -1.4319  0.2697       . -0.5877 -0.4079
## 4 -1.4621  0.2641 -0.6795       . -0.1082
## 5 -1.8471 -0.1143 -1.0996 -0.7082       .
## 
## Upper 95%-confidence limit:
##         1      2       3       4      5
## 1       . 2.4636  1.4319  1.4621 1.8471
## 2 -1.1595      . -0.2697 -0.2641 0.1143
## 3  0.4757 2.3972       .  0.6795 1.0996
## 4  0.4141 2.3110  0.5877       . 0.7082
## 5  0.1991 2.0894  0.4079  0.1082      .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0; I^2 = 0%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                    Q d.f.  p-value
## Total           2.29    4   0.6830
## Within designs  1.61    2   0.4473
## Between designs 0.68    2   0.7121
# Draw network graphs
netgraph(net1, points=TRUE, cex.points=3, cex=1.5,
thickness="se.fixed")

netgraph(net1, points=TRUE, cex.points=3, cex = 1.5,
plastic=TRUE, thickness="se.fixed",
iterate=TRUE)

netgraph(net1, points=TRUE, cex.points=3, cex = 1.5,
plastic=TRUE, thickness="se.fixed",
iterate=TRUE, start="eigen")

# Example using generic outcomes (internal call of function metagen)
# Calculate standard error for means y1, y2, y3

parkinson$se1 <- with(parkinson, sqrt(sd1^2/n1))
parkinson$se2 <- with(parkinson, sqrt(sd2^2/n2))
parkinson$se3 <- with(parkinson, sqrt(sd3^2/n3))

# Transform data from arm-based format to contrast-based format using
# means and standard errors (note, argument 'sm' has to be used to
# specify that argument 'TE' is a mean difference)

p2 <- pairwise(list(Treatment1, Treatment2, Treatment3),
TE=list(y1, y2, y3),
seTE=list(se1, se2, se3),
data=parkinson, studlab=Study,
sm="MD")
p2
##      TE      seTE studlab treat1 treat2   TE1     seTE1   TE2     seTE2
## 1  0.31 0.6680897       1      1      3 -1.22 0.5035062 -1.53 0.4391187
## 2  1.70 0.3826406       2      1      2 -0.70 0.2821224 -2.40 0.2584972
## 3  2.30 0.7177460       3      1      2 -0.30 0.5047146 -2.60 0.5103161
## 4  0.90 0.6949881       3      1      4 -0.30 0.5047146 -1.20 0.4777778
## 5 -1.40 0.6990666       3      2      4 -2.60 0.5103161 -1.20 0.4777778
## 6  0.35 0.4419417       4      3      4 -0.24 0.2651650 -0.59 0.3535534
## 7 -0.55 0.5551146       5      3      4 -0.73 0.3354102 -0.18 0.4423259
## 8  0.30 0.2742763       6      4      5 -2.20 0.1973566 -2.50 0.1904675
## 9  0.30 0.3200872       7      4      5 -1.80 0.1998441 -2.10 0.2500364
# Compare pairwise objects p1 (based on continuous outcomes) and p2
# (based on generic outcomes)
all.equal(p1[, c("TE", "seTE", "studlab", "treat1", "treat2")],
p2[, c("TE", "seTE", "studlab", "treat1", "treat2")])
## [1] TRUE
# Same result as network meta-analysis based on continuous outcomes
# (object net1)
net2 <- netmeta(p2)
net2
## Original data (with adjusted standard errors for multi-arm studies):
## 
##   treat1 treat2    TE   seTE seTE.adj narms multiarm
## 1      1      3  0.31 0.6681   0.6681     2         
## 2      1      2  1.70 0.3826   0.3826     2         
## 3      1      2  2.30 0.7177   0.8976     3        *
## 3      1      4  0.90 0.6950   0.8404     3        *
## 3      2      4 -1.40 0.6991   0.8497     3        *
## 4      3      4  0.35 0.4419   0.4419     2         
## 5      3      4 -0.55 0.5551   0.5551     2         
## 6      4      5  0.30 0.2743   0.2743     2         
## 7      4      5  0.30 0.3201   0.3201     2         
## 
## Number of treatment arms (by study):
##   narms
## 1     2
## 2     2
## 3     3
## 4     2
## 5     2
## 6     2
## 7     2
## 
## Results (fixed effect model):
## 
##   treat1 treat2      MD              95%-CI    Q leverage
## 1      1      3  0.4781  [-0.4757;  1.4319] 0.06     0.53
## 2      1      2  1.8116  [ 1.1595;  2.4636] 0.08     0.76
## 3      1      2  1.8116  [ 1.1595;  2.4636] 0.30     0.14
## 3      1      4  0.5240  [-0.4141;  1.4621] 0.20     0.32
## 3      2      4 -1.2876  [-2.3110; -0.2641] 0.02     0.38
## 4      3      4  0.0459  [-0.5877;  0.6795] 0.47     0.54
## 5      3      4  0.0459  [-0.5877;  0.6795] 1.15     0.34
## 6      4      5  0.3000  [-0.1082;  0.7082] 0.00     0.58
## 7      4      5  0.3000  [-0.1082;  0.7082] 0.00     0.42
## 
## Number of studies: k = 7
## Number of treatments: n = 5
## Number of pairwise comparisons: m = 9
## Number of designs: d = 5
## 
## Fixed effect model
## 
## Treatment estimate (sm = 'MD'):
##         1      2       3       4       5
## 1       . 1.8116  0.4781  0.5240  0.8240
## 2 -1.8116      . -1.3334 -1.2876 -0.9876
## 3 -0.4781 1.3334       .  0.0459  0.3459
## 4 -0.5240 1.2876 -0.0459       .  0.3000
## 5 -0.8240 0.9876 -0.3459 -0.3000       .
## 
## Lower 95%-confidence limit:
##         1       2       3       4       5
## 1       .  1.1595 -0.4757 -0.4141 -0.1991
## 2 -2.4636       . -2.3972 -2.3110 -2.0894
## 3 -1.4319  0.2697       . -0.5877 -0.4079
## 4 -1.4621  0.2641 -0.6795       . -0.1082
## 5 -1.8471 -0.1143 -1.0996 -0.7082       .
## 
## Upper 95%-confidence limit:
##         1      2       3       4      5
## 1       . 2.4636  1.4319  1.4621 1.8471
## 2 -1.1595      . -0.2697 -0.2641 0.1143
## 3  0.4757 2.3972       .  0.6795 1.0996
## 4  0.4141 2.3110  0.5877       . 0.7082
## 5  0.1991 2.0894  0.4079  0.1082      .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0; I^2 = 0%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                    Q d.f.  p-value
## Total           2.29    4   0.6830
## Within designs  1.61    2   0.4473
## Between designs 0.68    2   0.7121
# Example with binary data
data(smokingcessation)
# Transform data from arm-based format to contrast-based format
# (interal call of metabin function). Argument 'sm' has to be used for
# odds ratio as risk ratio (sm="RR") is default of metabin function.
p3 <- pairwise(list(treat1, treat2, treat3),
list(event1, event2, event3),
list(n1, n2, n3),
data=smokingcessation,
sm="OR")
p3
##              TE      seTE studlab treat1 treat2 event1   n1 event2   n2
## 1  -1.051293027 0.4132432       1      A      C      9  140     23  140
## 2  -0.128527575 0.4759803       1      A      D      9  140     10  138
## 3   0.922765452 0.3997972       1      C      D     23  140     10  138
## 4  -0.001244555 0.4504070       2      B      C     11   78     12   85
## 5  -0.225333286 0.3839393       2      B      D     11   78     29  170
## 6  -0.224088731 0.3722995       2      C      D     12   85     29  170
## 7  -2.202289286 0.1430439       3      A      C     75  731    363  714
## 8  -0.870353637 0.7910933       4      A      C      2  106      9  205
## 9  -0.415648522 0.1557329       5      A      C     58  549    237 1561
## 10 -2.779683746 1.4698402       6      A      C      0   33      9   48
## 11 -2.705393275 0.6251608       7      A      C      3  100     31   98
## 12 -2.425187415 1.0422512       8      A      C      1   31     26   95
## 13 -0.443616874 0.5219769       9      A      C      6   39     17   77
## 14  0.015964936 0.1699150      10      A      B     79  702     77  694
## 15 -0.393504544 0.3265754      11      A      B     18  671     21  535
## 16 -0.390412268 0.1680177      12      A      C     64  642    107  761
## 17 -0.106335650 0.5955997      13      A      C      5   62      8   90
## 18 -0.583398287 0.2983467      14      A      C     20  234     34  237
## 19 -3.522516830 1.4969970      15      A      D      0   20      9   20
## 20 -0.679594214 0.4411158      16      A      B      8  116     19  149
## 21 -0.539679846 0.1401199      17      A      C     95 1107    143 1031
## 22  0.125505082 0.3199924      18      A      C     15  187     36  504
## 23  0.239970162 0.1736564      19      A      C     78  584     73  675
## 24 -0.038956007 0.1873842      20      A      C     69 1177     54  888
## 25  0.151684587 0.4289753      21      B      C     20   49     16   43
## 26 -1.043486306 0.4489795      22      B      D      7   66     32  127
## 27 -0.680724661 0.4092394      23      C      D     12   76     20   74
## 28  0.405465108 0.7139060      24      C      D      9   55      3   26
##    incr allstudies
## 1   0.0      FALSE
## 2   0.0      FALSE
## 3   0.0      FALSE
## 4   0.0      FALSE
## 5   0.0      FALSE
## 6   0.0      FALSE
## 7   0.0      FALSE
## 8   0.0      FALSE
## 9   0.0      FALSE
## 10  0.5      FALSE
## 11  0.0      FALSE
## 12  0.0      FALSE
## 13  0.0      FALSE
## 14  0.0      FALSE
## 15  0.0      FALSE
## 16  0.0      FALSE
## 17  0.0      FALSE
## 18  0.0      FALSE
## 19  0.5      FALSE
## 20  0.0      FALSE
## 21  0.0      FALSE
## 22  0.0      FALSE
## 23  0.0      FALSE
## 24  0.0      FALSE
## 25  0.0      FALSE
## 26  0.0      FALSE
## 27  0.0      FALSE
## 28  0.0      FALSE
# Conduct network meta-analysis
net3 <- netmeta(p3)
net3
## Original data (with adjusted standard errors for multi-arm studies):
## 
##    treat1 treat2      TE   seTE seTE.adj narms multiarm
## 1       A      C -1.0513 0.4132   0.4776     3        *
## 1       A      D -0.1285 0.4760   0.6875     3        *
## 1       C      D  0.9228 0.3998   0.4551     3        *
## 2       B      C -0.0012 0.4504   0.6707     3        *
## 2       B      D -0.2253 0.3839   0.4390     3        *
## 2       C      D -0.2241 0.3723   0.4204     3        *
## 3       A      C -2.2023 0.1430   0.1430     2         
## 4       A      C -0.8704 0.7911   0.7911     2         
## 5       A      C -0.4156 0.1557   0.1557     2         
## 6       A      C -2.7797 1.4698   1.4698     2         
## 7       A      C -2.7054 0.6252   0.6252     2         
## 8       A      C -2.4252 1.0423   1.0423     2         
## 9       A      C -0.4436 0.5220   0.5220     2         
## 10      A      B  0.0160 0.1699   0.1699     2         
## 11      A      B -0.3935 0.3266   0.3266     2         
## 12      A      C -0.3904 0.1680   0.1680     2         
## 13      A      C -0.1063 0.5956   0.5956     2         
## 14      A      C -0.5834 0.2983   0.2983     2         
## 15      A      D -3.5225 1.4970   1.4970     2         
## 16      A      B -0.6796 0.4411   0.4411     2         
## 17      A      C -0.5397 0.1401   0.1401     2         
## 18      A      C  0.1255 0.3200   0.3200     2         
## 19      A      C  0.2400 0.1737   0.1737     2         
## 20      A      C -0.0390 0.1874   0.1874     2         
## 21      B      C  0.1517 0.4290   0.4290     2         
## 22      B      D -1.0435 0.4490   0.4490     2         
## 23      C      D -0.6807 0.4092   0.4092     2         
## 24      C      D  0.4055 0.7139   0.7139     2         
## 
## Number of treatment arms (by study):
##    narms
## 1      3
## 10     2
## 11     2
## 12     2
## 13     2
## 14     2
## 15     2
## 16     2
## 17     2
## 18     2
## 19     2
## 2      3
## 20     2
## 21     2
## 22     2
## 23     2
## 24     2
## 3      2
## 4      2
## 5      2
## 6      2
## 7      2
## 8      2
## 9      2
## 
## Results (fixed effect model):
## 
##    treat1 treat2     OR            95%-CI      Q leverage
## 1       A      C 0.5208  [0.4640; 0.5846]   0.70     0.02
## 1       A      D 0.4883  [0.3379; 0.7057]   0.73     0.07
## 1       C      D 0.9376  [0.6526; 1.3472]   4.71     0.17
## 2       B      C 0.6359  [0.4894; 0.8263]   0.45     0.04
## 2       B      D 0.5963  [0.4030; 0.8822]   0.44     0.21
## 2       C      D 0.9376  [0.6526; 1.3472]   0.14     0.19
## 3       A      C 0.5208  [0.4640; 0.5846] 117.39     0.17
## 4       A      C 0.5208  [0.4640; 0.5846]   0.08     0.01
## 5       A      C 0.5208  [0.4640; 0.5846]   2.31     0.14
## 6       A      C 0.5208  [0.4640; 0.5846]   2.09     0.00
## 7       A      C 0.5208  [0.4640; 0.5846]  10.78     0.01
## 8       A      C 0.5208  [0.4640; 0.5846]   2.89     0.00
## 9       A      C 0.5208  [0.4640; 0.5846]   0.16     0.01
## 10      A      B 0.8189  [0.6397; 1.0483]   1.61     0.55
## 11      A      B 0.8189  [0.6397; 1.0483]   0.35     0.15
## 12      A      C 0.5208  [0.4640; 0.5846]   2.43     0.12
## 13      A      C 0.5208  [0.4640; 0.5846]   0.84     0.01
## 14      A      C 0.5208  [0.4640; 0.5846]   0.05     0.04
## 15      A      D 0.4883  [0.3379; 0.7057]   3.51     0.02
## 16      A      B 0.8189  [0.6397; 1.0483]   1.18     0.08
## 17      A      C 0.5208  [0.4640; 0.5846]   0.65     0.18
## 18      A      C 0.5208  [0.4640; 0.5846]   5.91     0.03
## 19      A      C 0.5208  [0.4640; 0.5846]  26.41     0.12
## 20      A      C 0.5208  [0.4640; 0.5846]  10.72     0.10
## 21      B      C 0.6359  [0.4894; 0.8263]   1.98     0.10
## 22      B      D 0.5963  [0.4030; 0.8822]   1.37     0.20
## 23      C      D 0.9376  [0.6526; 1.3472]   2.27     0.20
## 24      C      D 0.9376  [0.6526; 1.3472]   0.43     0.07
## 
## Number of studies: k = 24
## Number of treatments: n = 4
## Number of pairwise comparisons: m = 28
## Number of designs: d = 8
## 
## Fixed effect model
## 
## Treatment estimate (sm = 'OR'):
##        A      B      C      D
## A      . 0.8189 0.5208 0.4883
## B 1.2211      . 0.6359 0.5963
## C 1.9202 1.5725      . 0.9376
## D 2.0479 1.6771 1.0665      .
## 
## Lower 95%-confidence limit:
##        A      B      C      D
## A      . 0.6397 0.4640 0.3379
## B 0.9539      . 0.4894 0.4030
## C 1.7107 1.2102      . 0.6526
## D 1.4170 1.1335 0.7423      .
## 
## Upper 95%-confidence limit:
##        A      B      C      D
## A      . 1.0483 0.5846 0.7057
## B 1.5631      . 0.8263 0.8822
## C 2.1554 2.0433      . 1.3472
## D 2.9598 2.4814 1.5323      .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.5989; I^2 = 88.6%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                      Q d.f.  p-value
## Total           202.62   23 < 0.0001
## Within designs  187.40   16 < 0.0001
## Between designs  15.22    7   0.0333
# Example with incidence rates
data(dietaryfat)
# Transform data from arm-based format to contrast-based format
p4 <- pairwise(list(treat1, treat2, treat3),
list(d1, d2, d3),
time=list(years1, years2, years3),
studlab=ID,
data=dietaryfat)
p4
##             TE       seTE                    studlab treat1 treat2 event1
## 1   0.02202212 0.13363595                     2 DART      1      2    113
## 2  -1.66363256 1.09544512      10 London Corn /Olive      1      2      1
## 3  -1.23608328 1.15470054      10 London Corn /Olive      1      3      1
## 4   0.42754928 0.73029674      10 London Corn /Olive      2      3      5
## 5   0.13122887 0.30276504          11 London Low Fat      1      2     24
## 6  -0.05863541 0.08803255      14 Minnesota Coronary      1      2    248
## 7   0.15090580 0.26071507                15 MRC Soya      1      2     31
## 8   0.31442233 0.19031014         18 Oslo Diet-Heart      1      2     65
## 9   1.13441029 1.15470054                   22 STARS      1      2      3
## 10 -0.40523688 0.24770004       23 Sydney Diet-Heart      1      2     28
## 11  0.04519334 0.10675600 26 Veterans Administration      1      2    177
## 12  0.67701780 1.22474487 27 Veterans Diet & Skin CA      1      2      2
##     time1 event2  time2 incr
## 1  1917.0    111 1925.0    0
## 2    43.6      5   41.3    0
## 3    43.6      3   38.0    0
## 4    41.3      3   38.0    0
## 5   393.5     20  373.9    0
## 6  4715.0    269 4823.0    0
## 7   715.0     28  751.0    0
## 8   885.0     48  895.0    0
## 9    87.8      1   91.0    0
## 10 1011.0     39  939.0    0
## 11 1544.0    174 1588.0    0
## 12  125.0      1  123.0    0
# Conduct network meta-analysis using incidence rate ratios (sm="IRR").
# Note, the argument 'sm' is not necessary as this is the default in R
# function metainc called internally
net4 <- netmeta(p4, sm="IRR")
summary(net4)
## Number of studies: k = 10
## Number of treatments: n = 3
## Number of pairwise comparisons: m = 12
## Number of designs: d = 2
## 
## Fixed effect model
## 
## Treatment estimate (sm = 'IRR'):
##        1      2      3
## 1      . 1.0096 1.1714
## 2 0.9905      . 1.1603
## 3 0.8537 0.8618      .
## 
## Lower 95%-confidence limit:
##        1      2      3
## 1      . 0.9084 0.2921
## 2 0.8913      . 0.2902
## 3 0.2129 0.2155      .
## 
## Upper 95%-confidence limit:
##        1      2      3
## 1      . 1.1220 4.6969
## 2 1.1008      . 4.6400
## 3 3.4229 3.4464      .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.0043; I^2 = 11.1%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                     Q d.f.  p-value
## Total           10.12    9   0.3405
## Within designs   7.79    8   0.4546
## Between designs  2.34    1   0.1262
# Example with long data format
data(Woods2010)
# Transform data from long arm-based format to contrast-based format
# Argument 'sm' has to be used for odds ratio as summary measure; by
# default the risk ratio is used in the metabin function called
# internally.
p5 <- pairwise(treatment, event=r, n=N,
studlab=author, data=Woods2010, sm="OR")
p5
##            TE      seTE       studlab      treat1     treat2 event1  n1
## 1  0.00881063 1.4173252     Boyd 1997     Placebo Salmeterol      1 227
## 2 -0.60382188 0.6311772 Calverly 2003 Fluticasone    Placebo      4 374
## 3  0.28497571 0.7672979 Calverly 2003 Fluticasone Salmeterol      4 374
## 4  0.65457491 0.8692018 Calverly 2003 Fluticasone        SFC      4 374
## 5  0.88879759 0.6940644 Calverly 2003     Placebo Salmeterol      7 361
## 6  1.25839679 0.8052894 Calverly 2003     Placebo        SFC      7 361
## 7  0.36959919 0.9158888 Calverly 2003  Salmeterol        SFC      3 372
## 8  1.41751820 1.2270043    Celli 2003     Placebo Salmeterol      2 270
##   event2  n2 incr allstudies
## 1      1 229    0      FALSE
## 2      7 361    0      FALSE
## 3      3 372    0      FALSE
## 4      2 358    0      FALSE
## 5      3 372    0      FALSE
## 6      2 358    0      FALSE
## 7      2 358    0      FALSE
## 8      1 554    0      FALSE
# Conduct network meta-analysis
net5 <- netmeta(p5)
net5
## Original data (with adjusted standard errors for multi-arm studies):
## 
##                    treat1     treat2      TE   seTE seTE.adj narms
## Boyd 1997         Placebo Salmeterol  0.0088 1.4173   1.4173     2
## Calverly 2003 Fluticasone    Placebo -0.6038 0.6312   0.7623     4
## Calverly 2003 Fluticasone Salmeterol  0.2850 0.7673   1.1578     4
## Calverly 2003 Fluticasone        SFC  0.6546 0.8692   1.4163     4
## Calverly 2003     Placebo Salmeterol  0.8888 0.6941   0.8791     4
## Calverly 2003     Placebo        SFC  1.2584 0.8053   1.0753     4
## Calverly 2003  Salmeterol        SFC  0.3696 0.9159   1.6332     4
## Celli 2003        Placebo Salmeterol  1.4175 1.2270   1.2270     2
##               multiarm
## Boyd 1997             
## Calverly 2003        *
## Calverly 2003        *
## Calverly 2003        *
## Calverly 2003        *
## Calverly 2003        *
## Calverly 2003        *
## Celli 2003            
## 
## Number of treatment arms (by study):
##               narms
## Boyd 1997         2
## Calverly 2003     4
## Celli 2003        2
## 
## Results (fixed effect model):
## 
##                    treat1     treat2     OR             95%-CI    Q
## Boyd 1997         Placebo Salmeterol 2.3678  [0.7967;  7.0370] 0.36
## Calverly 2003 Fluticasone    Placebo 0.5512  [0.1640;  1.8526] 0.00
## Calverly 2003 Fluticasone Salmeterol 1.3051  [0.3243;  5.2517] 0.00
## Calverly 2003 Fluticasone        SFC 1.9243  [0.3503; 10.5717] 0.00
## Calverly 2003     Placebo Salmeterol 2.3678  [0.7967;  7.0370] 0.00
## Calverly 2003     Placebo        SFC 3.4913  [0.7344; 16.5976] 0.00
## Calverly 2003  Salmeterol        SFC 1.4745  [0.2686;  8.0933] 0.00
## Celli 2003        Placebo Salmeterol 2.3678  [0.7967;  7.0370] 0.21
##               leverage
## Boyd 1997         0.15
## Calverly 2003     0.66
## Calverly 2003     0.38
## Calverly 2003     0.38
## Calverly 2003     0.40
## Calverly 2003     0.55
## Calverly 2003     0.28
## Celli 2003        0.21
## 
## Number of studies: k = 3
## Number of treatments: n = 4
## Number of pairwise comparisons: m = 8
## Number of designs: d = 2
## 
## Fixed effect model
## 
## Treatment estimate (sm = 'OR'):
##             Fluticasone Placebo Salmeterol    SFC
## Fluticasone           .  0.5512     1.3051 1.9243
## Placebo          1.8143       .     2.3678 3.4913
## Salmeterol       0.7662  0.4223          . 1.4745
## SFC              0.5197  0.2864     0.6782      .
## 
## Lower 95%-confidence limit:
##             Fluticasone Placebo Salmeterol    SFC
## Fluticasone           .  0.1640     0.3243 0.3503
## Placebo          0.5398       .     0.7967 0.7344
## Salmeterol       0.1904  0.1421          . 0.2686
## SFC              0.0946  0.0602     0.1236      .
## 
## Upper 95%-confidence limit:
##             Fluticasone Placebo Salmeterol     SFC
## Fluticasone           .  1.8526     5.2517 10.5717
## Placebo          6.0982       .     7.0370 16.5976
## Salmeterol       3.0834  1.2552          .  8.0933
## SFC              2.8549  1.3616     3.7225       .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0; I^2 = 0%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                    Q d.f.  p-value
## Total           0.57    2   0.7525
## Within designs  0.56    1   0.4524
## Between designs 0.00    1   0.9485
data(parkinson)
# Transform data from arm-based format to contrast-based format
p1 <- pairwise(list(Treatment1, Treatment2, Treatment3),
n=list(n1, n2, n3),
mean=list(y1, y2, y3),
sd=list(sd1, sd2, sd3),
data=parkinson, studlab=Study)
p1
##      TE      seTE studlab treat1 treat2  n1 mean1  sd1  n2 mean2  sd2
## 1  0.31 0.6680897       1      1      3  54 -1.22 3.70  95 -1.53 4.28
## 2  1.70 0.3826406       2      1      2 172 -0.70 3.70 173 -2.40 3.40
## 3  2.30 0.7177460       3      1      2  76 -0.30 4.40  71 -2.60 4.30
## 4  0.90 0.6949881       3      1      4  76 -0.30 4.40  81 -1.20 4.30
## 5 -1.40 0.6990666       3      2      4  71 -2.60 4.30  81 -1.20 4.30
## 6  0.35 0.4419417       4      3      4 128 -0.24 3.00  72 -0.59 3.00
## 7 -0.55 0.5551146       5      3      4  80 -0.73 3.00  46 -0.18 3.00
## 8  0.30 0.2742763       6      4      5 137 -2.20 2.31 131 -2.50 2.18
## 9  0.30 0.3200872       7      4      5 154 -1.80 2.48 143 -2.10 2.99
# Conduct network meta-analysis
net1 <- netmeta(p1)
net1
## Original data (with adjusted standard errors for multi-arm studies):
## 
##   treat1 treat2    TE   seTE seTE.adj narms multiarm
## 1      1      3  0.31 0.6681   0.6681     2         
## 2      1      2  1.70 0.3826   0.3826     2         
## 3      1      2  2.30 0.7177   0.8976     3        *
## 3      1      4  0.90 0.6950   0.8404     3        *
## 3      2      4 -1.40 0.6991   0.8497     3        *
## 4      3      4  0.35 0.4419   0.4419     2         
## 5      3      4 -0.55 0.5551   0.5551     2         
## 6      4      5  0.30 0.2743   0.2743     2         
## 7      4      5  0.30 0.3201   0.3201     2         
## 
## Number of treatment arms (by study):
##   narms
## 1     2
## 2     2
## 3     3
## 4     2
## 5     2
## 6     2
## 7     2
## 
## Results (fixed effect model):
## 
##   treat1 treat2      MD              95%-CI    Q leverage
## 1      1      3  0.4781  [-0.4757;  1.4319] 0.06     0.53
## 2      1      2  1.8116  [ 1.1595;  2.4636] 0.08     0.76
## 3      1      2  1.8116  [ 1.1595;  2.4636] 0.30     0.14
## 3      1      4  0.5240  [-0.4141;  1.4621] 0.20     0.32
## 3      2      4 -1.2876  [-2.3110; -0.2641] 0.02     0.38
## 4      3      4  0.0459  [-0.5877;  0.6795] 0.47     0.54
## 5      3      4  0.0459  [-0.5877;  0.6795] 1.15     0.34
## 6      4      5  0.3000  [-0.1082;  0.7082] 0.00     0.58
## 7      4      5  0.3000  [-0.1082;  0.7082] 0.00     0.42
## 
## Number of studies: k = 7
## Number of treatments: n = 5
## Number of pairwise comparisons: m = 9
## Number of designs: d = 5
## 
## Fixed effect model
## 
## Treatment estimate (sm = 'MD'):
##         1      2       3       4       5
## 1       . 1.8116  0.4781  0.5240  0.8240
## 2 -1.8116      . -1.3334 -1.2876 -0.9876
## 3 -0.4781 1.3334       .  0.0459  0.3459
## 4 -0.5240 1.2876 -0.0459       .  0.3000
## 5 -0.8240 0.9876 -0.3459 -0.3000       .
## 
## Lower 95%-confidence limit:
##         1       2       3       4       5
## 1       .  1.1595 -0.4757 -0.4141 -0.1991
## 2 -2.4636       . -2.3972 -2.3110 -2.0894
## 3 -1.4319  0.2697       . -0.5877 -0.4079
## 4 -1.4621  0.2641 -0.6795       . -0.1082
## 5 -1.8471 -0.1143 -1.0996 -0.7082       .
## 
## Upper 95%-confidence limit:
##         1      2       3       4      5
## 1       . 2.4636  1.4319  1.4621 1.8471
## 2 -1.1595      . -0.2697 -0.2641 0.1143
## 3  0.4757 2.3972       .  0.6795 1.0996
## 4  0.4141 2.3110  0.5877       . 0.7082
## 5  0.1991 2.0894  0.4079  0.1082      .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0; I^2 = 0%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                    Q d.f.  p-value
## Total           2.29    4   0.6830
## Within designs  1.61    2   0.4473
## Between designs 0.68    2   0.7121
# Draw network graphs
netgraph(net1, points=TRUE, cex.points=3, cex=1.5,
thickness="se.fixed")

netgraph(net1, points=TRUE, cex.points=3, cex = 1.5,
plastic=TRUE, thickness="se.fixed",
iterate=TRUE)

netgraph(net1, points=TRUE, cex.points=3, cex = 1.5,
plastic=TRUE, thickness="se.fixed",
iterate=TRUE, start="eigen")

data(Linde2015)
# Define order of treatments
trts <- c("TCA", "SSRI", "SNRI", "NRI",
 "Low-dose SARI", "NaSSa", "rMAO-A", "Hypericum",
"Placebo")

# Outcome labels
outcomes <- c("Early response", "Early remission")

# (1) Early response
p1 <- pairwise(treat = list(treatment1, treatment2, treatment3),
event = list(resp1, resp2, resp3),
n = list(n1, n2, n3),
studlab = id, data = Linde2015, sm = "OR")
## Warning: Comparisons with missing TE / seTE or zero seTE will not be
## considered in network meta-analysis.
## Comparisons will not be considered in network meta-analysis:
##  TE seTE studlab treat1  treat2 event1  n1 event2  n2 incr allstudies
##  NA   NA      14    TCA    SSRI     NA  10     NA  11    0      FALSE
##  NA   NA      18    TCA Placebo     NA  73     NA  73    0      FALSE
##  NA   NA      21    TCA  rMAO-A     NA  46     NA  98    0      FALSE
##  NA   NA      27   SSRI Placebo     NA  80     NA  81    0      FALSE
##  NA   NA      51    TCA  rMAO-A     NA  71     NA  71    0      FALSE
##  NA   NA     130    TCA   NaSSa     NA  35     NA  36    0      FALSE
##  NA   NA     131   SSRI    SNRI     NA 697     NA 688    0      FALSE
##  NA   NA     130    TCA Placebo     NA  35     NA  34    0      FALSE
##  NA   NA     130  NaSSa Placebo     NA  36     NA  34    0      FALSE
net1 <- netmeta(p1,
comb.fixed = FALSE, comb.random = TRUE,
seq = trts, ref = "Placebo")
## Warning: Comparisons with missing TE / seTE or zero seTE not considered in
## network meta-analysis.
## Comparisons not considered in network meta-analysis:
##  studlab treat1  treat2 TE seTE
##       14    TCA    SSRI NA   NA
##       18    TCA Placebo NA   NA
##       21    TCA  rMAO-A NA   NA
##       27   SSRI Placebo NA   NA
##       51    TCA  rMAO-A NA   NA
##      130  NaSSa Placebo NA   NA
##      130    TCA   NaSSa NA   NA
##      130    TCA Placebo NA   NA
##      131   SSRI    SNRI NA   NA
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
# (2) Early remission
p2 <- pairwise(treat = list(treatment1, treatment2, treatment3),
event = list(remi1, remi2, remi3),
n = list(n1, n2, n3),
studlab = id, data = Linde2015, sm = "OR")
## Warning: Comparisons with missing TE / seTE or zero seTE will not be
## considered in network meta-analysis.
## Comparisons will not be considered in network meta-analysis:
##  TE seTE studlab        treat1  treat2 event1  n1 event2  n2 incr
##  NA   NA       1           TCA    SNRI     NA  75     NA  78  0.0
##  NA   NA      11           TCA    SSRI     NA 108     NA  99  0.0
##  NA   NA      14           TCA    SSRI     NA  10     NA  11  0.0
##  NA   NA      18           TCA Placebo     NA  73     NA  73  0.0
##  NA   NA      20           TCA    SSRI     NA  55     NA  51  0.0
##  NA   NA      26          SSRI Placebo     NA 314     NA 154  0.0
##  NA   NA      53          SSRI   NaSSa     NA 122     NA 121  0.0
##  NA   NA      56           TCA    SSRI     NA  92     NA 380  0.0
##  NA   NA      73     Hypericum Placebo     NA  55     NA  57  0.0
##  NA   NA      90           TCA    SSRI     NA  42     NA  42  0.0
##  NA   NA      96           TCA    SSRI      0  30      0  29  0.5
##  NA   NA     121 Low-dose SARI   NaSSa     NA  43     NA  40  0.0
##  NA   NA     130           TCA   NaSSa     NA  35     NA  36  0.0
##  NA   NA       1           TCA Placebo     NA  75     NA  76  0.0
##  NA   NA      11           TCA Placebo     NA 108     NA 101  0.0
##  NA   NA      53          SSRI Placebo     NA 122     NA 129  0.0
##  NA   NA     130           TCA Placebo     NA  35     NA  34  0.0
##  NA   NA       1          SNRI Placebo     NA  78     NA  76  0.0
##  NA   NA      11          SSRI Placebo     NA  99     NA 101  0.0
##  NA   NA      53         NaSSa Placebo     NA 121     NA 129  0.0
##  NA   NA     130         NaSSa Placebo     NA  36     NA  34  0.0
##  allstudies
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
##       FALSE
net2 <- netmeta(p2,
comb.fixed = FALSE, comb.random = TRUE,
seq = trts, ref = "Placebo")
## Warning: Comparisons with missing TE / seTE or zero seTE not considered in
## network meta-analysis.
## Comparisons not considered in network meta-analysis:
##  studlab        treat1  treat2 TE seTE
##        1           TCA Placebo NA   NA
##        1           TCA    SNRI NA   NA
##        1          SNRI Placebo NA   NA
##       11          SSRI Placebo NA   NA
##       11           TCA Placebo NA   NA
##       11           TCA    SSRI NA   NA
##       14           TCA    SSRI NA   NA
##       18           TCA Placebo NA   NA
##       20           TCA    SSRI NA   NA
##       26          SSRI Placebo NA   NA
##       53         NaSSa Placebo NA   NA
##       53          SSRI   NaSSa NA   NA
##       53          SSRI Placebo NA   NA
##       56           TCA    SSRI NA   NA
##       73     Hypericum Placebo NA   NA
##       90           TCA    SSRI NA   NA
##       96           TCA    SSRI NA   NA
##      121 Low-dose SARI   NaSSa NA   NA
##      130         NaSSa Placebo NA   NA
##      130           TCA   NaSSa NA   NA
##      130           TCA Placebo NA   NA
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
# Partial order of treatment rankings
po2 <- netposet(netrank(net1, small.values = "bad"),
netrank(net2, small.values = "bad"),
outcomes = outcomes)

# Scatter plot
plot(po2)

# Same scatter plot as only two outcomes considered in netposet()
plot(po2, "biplot")
## Warning in plot.netposet(po2, "biplot"): Scatter plot instead of biplot
## generated as only two outcomes considered in netposet().

# Consider three outcomes
# Outcome labels
outcomes <- c("Early response", "Early remission", "Lost to follow-up")

# (3) Loss to follow-up
p3 <- pairwise(treat = list(treatment1, treatment2, treatment3),
event = list(loss1, loss2, loss3),
n = list(n1, n2, n3),
studlab = id, data = Linde2015, sm = "OR")
## Warning: Comparisons with missing TE / seTE or zero seTE will not be
## considered in network meta-analysis.
## Comparisons will not be considered in network meta-analysis:
##  TE seTE studlab treat1  treat2 event1  n1 event2  n2 incr allstudies
##  NA   NA       9    TCA    SSRI     NA 363     NA 173    0      FALSE
##  NA   NA      14    TCA    SSRI     NA  10     NA  11    0      FALSE
##  NA   NA      48   SSRI Placebo     31 191     NA 189    0      FALSE
##  NA   NA      53   SSRI   NaSSa     NA 122     NA 121    0      FALSE
##  NA   NA      90    TCA    SSRI     NA  42     NA  42    0      FALSE
##  NA   NA     116   SSRI   NaSSa     NA  31     NA  31    0      FALSE
##  NA   NA     120    TCA    SSRI     NA 218     NA 109    0      FALSE
##  NA   NA      53   SSRI Placebo     NA 122     NA 129    0      FALSE
##  NA   NA      53  NaSSa Placebo     NA 121     NA 129    0      FALSE
net3 <- netmeta(p3,
comb.fixed = FALSE, comb.random = TRUE,
seq = trts, ref = "Placebo")
## Warning: Comparisons with missing TE / seTE or zero seTE not considered in
## network meta-analysis.
## Comparisons not considered in network meta-analysis:
##  studlab treat1  treat2 TE seTE
##        9    TCA    SSRI NA   NA
##       14    TCA    SSRI NA   NA
##       48   SSRI Placebo NA   NA
##       53  NaSSa Placebo NA   NA
##       53   SSRI   NaSSa NA   NA
##       53   SSRI Placebo NA   NA
##       90    TCA    SSRI NA   NA
##      116   SSRI   NaSSa NA   NA
##      120    TCA    SSRI NA   NA
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
# Partial order of treatment rankings (with three outcomes)
po3 <- netposet(netrank(net1, small.values = "bad"),
netrank(net2, small.values = "bad"),
netrank(net3, small.values = "good"),
outcomes = outcomes)

# Scatter plot
plot(po3)

# Biplot (reverse limits of y-axis as biplot is upside down)
plot(po3, "bi", xlim = c(-1, 1.7), ylim = c(2.5, -2.5))

data(Senn2013)
net1 <- netmeta(TE, seTE, treat1, treat2, studlab,
data=Senn2013, sm="MD")
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
print(decomp.design(net1))
## Q statistics to assess homogeneity / consistency
## 
##                     Q df  p-value
## Total           96.99 18 < 0.0001
## Within designs  74.46 11 < 0.0001
## Between designs 22.53  7   0.0021
## 
## Design-specific decomposition of within-designs Q statistic
## 
##     Design     Q df  p-value
##  benf:plac  4.38  1   0.0363
##  metf:plac 42.16  2 < 0.0001
##  metf:rosi  0.19  1   0.6655
##  migl:plac  6.45  2   0.0398
##  plac:rosi 21.27  5   0.0007
## 
## Between-designs Q statistic after detaching of single designs
## 
##  Detached design     Q df  p-value
##        acar:plac 22.44  6   0.0010
##        acar:sulf 22.52  6   0.0010
##        metf:piog 17.13  6   0.0088
##        metf:plac 22.07  6   0.0012
##        metf:rosi 22.52  6   0.0010
##        metf:sulf  7.51  6   0.2760
##        piog:plac 17.25  6   0.0084
##        piog:rosi 22.48  6   0.0010
##        plac:rosi 16.29  6   0.0123
##        rosi:sulf  6.77  6   0.3425
##   acar:metf:plac 22.38  5   0.0004
## 
## Q statistic to assess consistency under the assumption of
## a full design-by-treatment interaction random effects model
## 
##                    Q df  p-value tau.within tau2.within
## Between designs 2.19  7   0.9483     0.3797      0.1442
data(Senn2013)
# Fixed effect model (default)
net1 <- netmeta(TE, seTE, treat1, treat2, studlab,
data=Senn2013, sm="MD")
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
print(net1, ref="plac", digits=3)
## Original data (with adjusted standard errors for multi-arm studies):
## 
##                    treat1 treat2    TE  seTE seTE.adj narms multiarm
## DeFronzo1995         metf   plac -1.90 0.141    0.141     2         
## Lewin2007            metf   plac -0.82 0.099    0.099     2         
## Willms1999           acar   metf  0.20 0.358    0.388     3        *
## Davidson2007         plac   rosi  1.34 0.144    0.144     2         
## Wolffenbuttel1999    plac   rosi  1.10 0.114    0.114     2         
## Kipnes2001           piog   plac -1.30 0.127    0.127     2         
## Kerenyi2004          plac   rosi  0.77 0.108    0.108     2         
## Hanefeld2004         metf   piog -0.16 0.085    0.085     2         
## Derosa2004           piog   rosi  0.10 0.183    0.183     2         
## Baksi2004            plac   rosi  1.30 0.101    0.101     2         
## Rosenstock2008       plac   rosi  1.09 0.226    0.226     2         
## Zhu2003              plac   rosi  1.50 0.162    0.162     2         
## Yang2003             metf   rosi  0.14 0.224    0.224     2         
## Vongthavaravat2002   rosi   sulf -1.20 0.144    0.144     2         
## Oyama2008            acar   sulf -0.40 0.155    0.155     2         
## Costa1997            acar   plac -0.80 0.143    0.143     2         
## Hermansen2007        plac   sita  0.57 0.129    0.129     2         
## Garber2008           plac   vild  0.70 0.127    0.127     2         
## Alex1998             metf   sulf -0.37 0.118    0.118     2         
## Johnston1994         migl   plac -0.74 0.184    0.184     2         
## Johnston1998a        migl   plac -1.41 0.224    0.224     2         
## Kim2007              metf   rosi  0.00 0.234    0.234     2         
## Johnston1998b        migl   plac -0.68 0.283    0.283     2         
## Gonzalez-Ortiz2004   metf   plac -0.40 0.436    0.436     2         
## Stucci1996           benf   plac -0.23 0.347    0.347     2         
## Moulin2006           benf   plac -1.01 0.137    0.137     2         
## Willms1999           metf   plac -1.20 0.376    0.413     3        *
## Willms1999           acar   plac -1.00 0.467    0.824     3        *
## 
## Number of treatment arms (by study):
##                    narms
## Alex1998               2
## Baksi2004              2
## Costa1997              2
## Davidson2007           2
## DeFronzo1995           2
## Derosa2004             2
## Garber2008             2
## Gonzalez-Ortiz2004     2
## Hanefeld2004           2
## Hermansen2007          2
## Johnston1994           2
## Johnston1998a          2
## Johnston1998b          2
## Kerenyi2004            2
## Kim2007                2
## Kipnes2001             2
## Lewin2007              2
## Moulin2006             2
## Oyama2008              2
## Rosenstock2008         2
## Stucci1996             2
## Vongthavaravat2002     2
## Willms1999             3
## Wolffenbuttel1999      2
## Yang2003               2
## Zhu2003                2
## 
## Results (fixed effect model):
## 
##                    treat1 treat2     MD            95%-CI     Q leverage
## DeFronzo1995         metf   plac -1.114  [-1.231; -0.997] 30.89     0.18
## Lewin2007            metf   plac -1.114  [-1.231; -0.997]  8.79     0.36
## Willms1999           acar   metf  0.287  [ 0.062;  0.511]  0.05     0.09
## Davidson2007         plac   rosi  1.202  [ 1.108;  1.295]  0.93     0.11
## Wolffenbuttel1999    plac   rosi  1.202  [ 1.108;  1.295]  0.80     0.17
## Kipnes2001           piog   plac -1.066  [-1.215; -0.918]  3.39     0.36
## Kerenyi2004          plac   rosi  1.202  [ 1.108;  1.295] 16.05     0.20
## Hanefeld2004         metf   piog -0.048  [-0.184;  0.089]  1.75     0.68
## Derosa2004           piog   rosi  0.135  [-0.025;  0.296]  0.04     0.20
## Baksi2004            plac   rosi  1.202  [ 1.108;  1.295]  0.94     0.22
## Rosenstock2008       plac   rosi  1.202  [ 1.108;  1.295]  0.24     0.04
## Zhu2003              plac   rosi  1.202  [ 1.108;  1.295]  3.37     0.09
## Yang2003             metf   rosi  0.088  [-0.045;  0.220]  0.05     0.09
## Vongthavaravat2002   rosi   sulf -0.762  [-0.943; -0.582]  9.29     0.41
## Oyama2008            acar   sulf -0.388  [-0.610; -0.166]  0.01     0.53
## Costa1997            acar   plac -0.827  [-1.040; -0.615]  0.04     0.57
## Hermansen2007        plac   sita  0.570  [ 0.317;  0.823]  0.00     1.00
## Garber2008           plac   vild  0.700  [ 0.450;  0.950]  0.00     1.00
## Alex1998             metf   sulf -0.675  [-0.848; -0.501]  6.62     0.56
## Johnston1994         migl   plac -0.944  [-1.193; -0.695]  1.23     0.48
## Johnston1998a        migl   plac -0.944  [-1.193; -0.695]  4.35     0.32
## Kim2007              metf   rosi  0.088  [-0.045;  0.220]  0.14     0.08
## Johnston1998b        migl   plac -0.944  [-1.193; -0.695]  0.87     0.20
## Gonzalez-Ortiz2004   metf   plac -1.114  [-1.231; -0.997]  2.69     0.02
## Stucci1996           benf   plac -0.905  [-1.154; -0.656]  3.79     0.13
## Moulin2006           benf   plac -0.905  [-1.154; -0.656]  0.59     0.87
## Willms1999           metf   plac -1.114  [-1.231; -0.997]  0.04     0.02
## Willms1999           acar   plac -0.827  [-1.040; -0.615]  0.04     0.02
## 
## Number of studies: k = 26
## Number of treatments: n = 10
## Number of pairwise comparisons: m = 28
## Number of designs: d = 15
## 
## Fixed effect model
## 
## Treatment estimate (sm = 'MD', comparison: other treatments vs 'plac'):
##          MD            95%-CI
## acar -0.827  [-1.040; -0.615]
## benf -0.905  [-1.154; -0.656]
## metf -1.114  [-1.231; -0.997]
## migl -0.944  [-1.193; -0.695]
## piog -1.066  [-1.215; -0.918]
## plac      .                 .
## rosi -1.202  [-1.295; -1.108]
## sita -0.570  [-0.823; -0.317]
## sulf -0.439  [-0.619; -0.260]
## vild -0.700  [-0.950; -0.450]
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.1087; I^2 = 81.4%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                     Q d.f.  p-value
## Total           96.99   18 < 0.0001
## Within designs  74.46   11 < 0.0001
## Between designs 22.53    7   0.0021
summary(net1)
## Number of studies: k = 26
## Number of treatments: n = 10
## Number of pairwise comparisons: m = 28
## Number of designs: d = 15
## 
## Fixed effect model
## 
## Treatment estimate (sm = 'MD'):
##         acar    benf    metf    migl    piog    plac   rosi    sita
## acar       .  0.0778  0.2867  0.1166  0.2391 -0.8274 0.3745 -0.2574
## benf -0.0778       .  0.2089  0.0387  0.1612 -0.9052 0.2967 -0.3352
## metf -0.2867 -0.2089       . -0.1702 -0.0477 -1.1141 0.0877 -0.5441
## migl -0.1166 -0.0387  0.1702       .  0.1225 -0.9439 0.2579 -0.3739
## piog -0.2391 -0.1612  0.0477 -0.1225       . -1.0664 0.1354 -0.4964
## plac  0.8274  0.9052  1.1141  0.9439  1.0664       . 1.2018  0.5700
## rosi -0.3745 -0.2967 -0.0877 -0.2579 -0.1354 -1.2018      . -0.6318
## sita  0.2574  0.3352  0.5441  0.3739  0.4964 -0.5700 0.6318       .
## sulf  0.3879  0.4657  0.6746  0.5044  0.6269 -0.4395 0.7623  0.1305
## vild  0.1274  0.2052  0.4141  0.2439  0.3664 -0.7000 0.5018 -0.1300
##         sulf    vild
## acar -0.3879 -0.1274
## benf -0.4657 -0.2052
## metf -0.6746 -0.4141
## migl -0.5044 -0.2439
## piog -0.6269 -0.3664
## plac  0.4395  0.7000
## rosi -0.7623 -0.5018
## sita -0.1305  0.1300
## sulf       .  0.2605
## vild -0.2605       .
## 
## Lower 95%-confidence limit:
##         acar    benf    metf    migl    piog    plac    rosi    sita
## acar       . -0.2497  0.0622 -0.2107 -0.0094 -1.0401  0.1506 -0.5879
## benf -0.4054       . -0.0662 -0.3133 -0.1288 -1.1543  0.0306 -0.6903
## metf -0.5113 -0.4841       . -0.4450 -0.1845 -1.2309 -0.0449 -0.8228
## migl -0.4438 -0.3908 -0.1046       . -0.1673 -1.1927 -0.0078 -0.7287
## piog -0.4876 -0.4513 -0.0891 -0.4123       . -1.2151 -0.0249 -0.7899
## plac  0.6147  0.6561  0.9973  0.6952  0.9178       .  1.1084  0.3170
## rosi -0.5983 -0.5627 -0.2203 -0.5236 -0.2957 -1.2953       . -0.9016
## sita -0.0732 -0.0199  0.2654  0.0191  0.2030 -0.8230  0.3621       .
## sulf  0.1662  0.1588  0.5011  0.1978  0.4178 -0.6188  0.5820 -0.1796
## vild -0.2005 -0.1474  0.1386 -0.1084  0.0760 -0.9495  0.2354 -0.4854
##         sulf    vild
## acar -0.6095 -0.4552
## benf -0.7726 -0.5577
## metf -0.8482 -0.6896
## migl -0.8111 -0.5962
## piog -0.8361 -0.6569
## plac  0.2602  0.4505
## rosi -0.9427 -0.7683
## sita -0.4406 -0.2254
## sulf       . -0.0467
## vild -0.5677       .
## 
## Upper 95%-confidence limit:
##         acar    benf   metf   migl   piog    plac   rosi    sita    sulf
## acar       .  0.4054 0.5113 0.4438 0.4876 -0.6147 0.5983  0.0732 -0.1662
## benf  0.2497       . 0.4841 0.3908 0.4513 -0.6561 0.5627  0.0199 -0.1588
## metf -0.0622  0.0662      . 0.1046 0.0891 -0.9973 0.2203 -0.2654 -0.5011
## migl  0.2107  0.3133 0.4450      . 0.4123 -0.6952 0.5236 -0.0191 -0.1978
## piog  0.0094  0.1288 0.1845 0.1673      . -0.9178 0.2957 -0.2030 -0.4178
## plac  1.0401  1.1543 1.2309 1.1927 1.2151       . 1.2953  0.8230  0.6188
## rosi -0.1506 -0.0306 0.0449 0.0078 0.0249 -1.1084      . -0.3621 -0.5820
## sita  0.5879  0.6903 0.8228 0.7287 0.7899 -0.3170 0.9016       .  0.1796
## sulf  0.6095  0.7726 0.8482 0.8111 0.8361 -0.2602 0.9427  0.4406       .
## vild  0.4552  0.5577 0.6896 0.5962 0.6569 -0.4505 0.7683  0.2254  0.0467
##         vild
## acar  0.2005
## benf  0.1474
## metf -0.1386
## migl  0.1084
## piog -0.0760
## plac  0.9495
## rosi -0.2354
## sita  0.4854
## sulf  0.5677
## vild       .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.1087; I^2 = 81.4%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                     Q d.f.  p-value
## Total           96.99   18 < 0.0001
## Within designs  74.46   11 < 0.0001
## Between designs 22.53    7   0.0021
# Random effects model
net2 <- netmeta(TE, seTE, treat1, treat2, studlab,
data=Senn2013, sm="MD", comb.random=TRUE)
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
print(net2, ref="plac", digits=3)
## Original data (with adjusted standard errors for multi-arm studies):
## 
##                    treat1 treat2    TE  seTE seTE.adj narms multiarm
## DeFronzo1995         metf   plac -1.90 0.141    0.141     2         
## Lewin2007            metf   plac -0.82 0.099    0.099     2         
## Willms1999           acar   metf  0.20 0.358    0.388     3        *
## Davidson2007         plac   rosi  1.34 0.144    0.144     2         
## Wolffenbuttel1999    plac   rosi  1.10 0.114    0.114     2         
## Kipnes2001           piog   plac -1.30 0.127    0.127     2         
## Kerenyi2004          plac   rosi  0.77 0.108    0.108     2         
## Hanefeld2004         metf   piog -0.16 0.085    0.085     2         
## Derosa2004           piog   rosi  0.10 0.183    0.183     2         
## Baksi2004            plac   rosi  1.30 0.101    0.101     2         
## Rosenstock2008       plac   rosi  1.09 0.226    0.226     2         
## Zhu2003              plac   rosi  1.50 0.162    0.162     2         
## Yang2003             metf   rosi  0.14 0.224    0.224     2         
## Vongthavaravat2002   rosi   sulf -1.20 0.144    0.144     2         
## Oyama2008            acar   sulf -0.40 0.155    0.155     2         
## Costa1997            acar   plac -0.80 0.143    0.143     2         
## Hermansen2007        plac   sita  0.57 0.129    0.129     2         
## Garber2008           plac   vild  0.70 0.127    0.127     2         
## Alex1998             metf   sulf -0.37 0.118    0.118     2         
## Johnston1994         migl   plac -0.74 0.184    0.184     2         
## Johnston1998a        migl   plac -1.41 0.224    0.224     2         
## Kim2007              metf   rosi  0.00 0.234    0.234     2         
## Johnston1998b        migl   plac -0.68 0.283    0.283     2         
## Gonzalez-Ortiz2004   metf   plac -0.40 0.436    0.436     2         
## Stucci1996           benf   plac -0.23 0.347    0.347     2         
## Moulin2006           benf   plac -1.01 0.137    0.137     2         
## Willms1999           metf   plac -1.20 0.376    0.413     3        *
## Willms1999           acar   plac -1.00 0.467    0.824     3        *
## 
## Number of treatment arms (by study):
##                    narms
## Alex1998               2
## Baksi2004              2
## Costa1997              2
## Davidson2007           2
## DeFronzo1995           2
## Derosa2004             2
## Garber2008             2
## Gonzalez-Ortiz2004     2
## Hanefeld2004           2
## Hermansen2007          2
## Johnston1994           2
## Johnston1998a          2
## Johnston1998b          2
## Kerenyi2004            2
## Kim2007                2
## Kipnes2001             2
## Lewin2007              2
## Moulin2006             2
## Oyama2008              2
## Rosenstock2008         2
## Stucci1996             2
## Vongthavaravat2002     2
## Willms1999             3
## Wolffenbuttel1999      2
## Yang2003               2
## Zhu2003                2
## 
## Results (fixed effect model):
## 
##                    treat1 treat2     MD            95%-CI     Q leverage
## DeFronzo1995         metf   plac -1.114  [-1.231; -0.997] 30.89     0.18
## Lewin2007            metf   plac -1.114  [-1.231; -0.997]  8.79     0.36
## Willms1999           acar   metf  0.287  [ 0.062;  0.511]  0.05     0.09
## Davidson2007         plac   rosi  1.202  [ 1.108;  1.295]  0.93     0.11
## Wolffenbuttel1999    plac   rosi  1.202  [ 1.108;  1.295]  0.80     0.17
## Kipnes2001           piog   plac -1.066  [-1.215; -0.918]  3.39     0.36
## Kerenyi2004          plac   rosi  1.202  [ 1.108;  1.295] 16.05     0.20
## Hanefeld2004         metf   piog -0.048  [-0.184;  0.089]  1.75     0.68
## Derosa2004           piog   rosi  0.135  [-0.025;  0.296]  0.04     0.20
## Baksi2004            plac   rosi  1.202  [ 1.108;  1.295]  0.94     0.22
## Rosenstock2008       plac   rosi  1.202  [ 1.108;  1.295]  0.24     0.04
## Zhu2003              plac   rosi  1.202  [ 1.108;  1.295]  3.37     0.09
## Yang2003             metf   rosi  0.088  [-0.045;  0.220]  0.05     0.09
## Vongthavaravat2002   rosi   sulf -0.762  [-0.943; -0.582]  9.29     0.41
## Oyama2008            acar   sulf -0.388  [-0.610; -0.166]  0.01     0.53
## Costa1997            acar   plac -0.827  [-1.040; -0.615]  0.04     0.57
## Hermansen2007        plac   sita  0.570  [ 0.317;  0.823]  0.00     1.00
## Garber2008           plac   vild  0.700  [ 0.450;  0.950]  0.00     1.00
## Alex1998             metf   sulf -0.675  [-0.848; -0.501]  6.62     0.56
## Johnston1994         migl   plac -0.944  [-1.193; -0.695]  1.23     0.48
## Johnston1998a        migl   plac -0.944  [-1.193; -0.695]  4.35     0.32
## Kim2007              metf   rosi  0.088  [-0.045;  0.220]  0.14     0.08
## Johnston1998b        migl   plac -0.944  [-1.193; -0.695]  0.87     0.20
## Gonzalez-Ortiz2004   metf   plac -1.114  [-1.231; -0.997]  2.69     0.02
## Stucci1996           benf   plac -0.905  [-1.154; -0.656]  3.79     0.13
## Moulin2006           benf   plac -0.905  [-1.154; -0.656]  0.59     0.87
## Willms1999           metf   plac -1.114  [-1.231; -0.997]  0.04     0.02
## Willms1999           acar   plac -0.827  [-1.040; -0.615]  0.04     0.02
## 
## Results (random effects model):
## 
##                    treat1 treat2     MD            95%-CI
## DeFronzo1995         metf   plac -1.127  [-1.429; -0.824]
## Lewin2007            metf   plac -1.127  [-1.429; -0.824]
## Willms1999           acar   metf  0.285  [-0.221;  0.791]
## Davidson2007         plac   rosi  1.233  [ 0.983;  1.484]
## Wolffenbuttel1999    plac   rosi  1.233  [ 0.983;  1.484]
## Kipnes2001           piog   plac -1.129  [-1.560; -0.699]
## Kerenyi2004          plac   rosi  1.233  [ 0.983;  1.484]
## Hanefeld2004         metf   piog  0.002  [-0.440;  0.444]
## Derosa2004           piog   rosi  0.104  [-0.335;  0.543]
## Baksi2004            plac   rosi  1.233  [ 0.983;  1.484]
## Rosenstock2008       plac   rosi  1.233  [ 0.983;  1.484]
## Zhu2003              plac   rosi  1.233  [ 0.983;  1.484]
## Yang2003             metf   rosi  0.107  [-0.217;  0.430]
## Vongthavaravat2002   rosi   sulf -0.817  [-1.282; -0.352]
## Oyama2008            acar   sulf -0.425  [-0.946;  0.095]
## Costa1997            acar   plac -0.842  [-1.324; -0.360]
## Hermansen2007        plac   sita  0.570  [-0.124;  1.264]
## Garber2008           plac   vild  0.700  [ 0.007;  1.393]
## Alex1998             metf   sulf -0.710  [-1.171; -0.249]
## Johnston1994         migl   plac -0.950  [-1.404; -0.495]
## Johnston1998a        migl   plac -0.950  [-1.404; -0.495]
## Kim2007              metf   rosi  0.107  [-0.217;  0.430]
## Johnston1998b        migl   plac -0.950  [-1.404; -0.495]
## Gonzalez-Ortiz2004   metf   plac -1.127  [-1.429; -0.824]
## Stucci1996           benf   plac -0.731  [-1.292; -0.170]
## Moulin2006           benf   plac -0.731  [-1.292; -0.170]
## Willms1999           metf   plac -1.127  [-1.429; -0.824]
## Willms1999           acar   plac -0.842  [-1.324; -0.360]
## 
## Number of studies: k = 26
## Number of treatments: n = 10
## Number of pairwise comparisons: m = 28
## Number of designs: d = 15
## 
## Fixed effect model
## 
## Treatment estimate (sm = 'MD', comparison: other treatments vs 'plac'):
##          MD            95%-CI
## acar -0.827  [-1.040; -0.615]
## benf -0.905  [-1.154; -0.656]
## metf -1.114  [-1.231; -0.997]
## migl -0.944  [-1.193; -0.695]
## piog -1.066  [-1.215; -0.918]
## plac      .                 .
## rosi -1.202  [-1.295; -1.108]
## sita -0.570  [-0.823; -0.317]
## sulf -0.439  [-0.619; -0.260]
## vild -0.700  [-0.950; -0.450]
## 
## Random effects model
## 
## Treatment estimate (sm = 'MD', comparison: other treatments vs 'plac'):
##          MD            95%-CI
## acar -0.842  [-1.324; -0.360]
## benf -0.731  [-1.292; -0.170]
## metf -1.127  [-1.429; -0.824]
## migl -0.950  [-1.404; -0.495]
## piog -1.129  [-1.560; -0.699]
## plac      .                 .
## rosi -1.233  [-1.484; -0.983]
## sita -0.570  [-1.264;  0.124]
## sulf -0.417  [-0.889;  0.056]
## vild -0.700  [-1.393; -0.007]
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.1087; I^2 = 81.4%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                     Q d.f.  p-value
## Total           96.99   18 < 0.0001
## Within designs  74.46   11 < 0.0001
## Between designs 22.53    7   0.0021
summary(net2)
## Number of studies: k = 26
## Number of treatments: n = 10
## Number of pairwise comparisons: m = 28
## Number of designs: d = 15
## 
## Fixed effect model
## 
## Treatment estimate (sm = 'MD'):
##         acar    benf    metf    migl    piog    plac   rosi    sita
## acar       .  0.0778  0.2867  0.1166  0.2391 -0.8274 0.3745 -0.2574
## benf -0.0778       .  0.2089  0.0387  0.1612 -0.9052 0.2967 -0.3352
## metf -0.2867 -0.2089       . -0.1702 -0.0477 -1.1141 0.0877 -0.5441
## migl -0.1166 -0.0387  0.1702       .  0.1225 -0.9439 0.2579 -0.3739
## piog -0.2391 -0.1612  0.0477 -0.1225       . -1.0664 0.1354 -0.4964
## plac  0.8274  0.9052  1.1141  0.9439  1.0664       . 1.2018  0.5700
## rosi -0.3745 -0.2967 -0.0877 -0.2579 -0.1354 -1.2018      . -0.6318
## sita  0.2574  0.3352  0.5441  0.3739  0.4964 -0.5700 0.6318       .
## sulf  0.3879  0.4657  0.6746  0.5044  0.6269 -0.4395 0.7623  0.1305
## vild  0.1274  0.2052  0.4141  0.2439  0.3664 -0.7000 0.5018 -0.1300
##         sulf    vild
## acar -0.3879 -0.1274
## benf -0.4657 -0.2052
## metf -0.6746 -0.4141
## migl -0.5044 -0.2439
## piog -0.6269 -0.3664
## plac  0.4395  0.7000
## rosi -0.7623 -0.5018
## sita -0.1305  0.1300
## sulf       .  0.2605
## vild -0.2605       .
## 
## Lower 95%-confidence limit:
##         acar    benf    metf    migl    piog    plac    rosi    sita
## acar       . -0.2497  0.0622 -0.2107 -0.0094 -1.0401  0.1506 -0.5879
## benf -0.4054       . -0.0662 -0.3133 -0.1288 -1.1543  0.0306 -0.6903
## metf -0.5113 -0.4841       . -0.4450 -0.1845 -1.2309 -0.0449 -0.8228
## migl -0.4438 -0.3908 -0.1046       . -0.1673 -1.1927 -0.0078 -0.7287
## piog -0.4876 -0.4513 -0.0891 -0.4123       . -1.2151 -0.0249 -0.7899
## plac  0.6147  0.6561  0.9973  0.6952  0.9178       .  1.1084  0.3170
## rosi -0.5983 -0.5627 -0.2203 -0.5236 -0.2957 -1.2953       . -0.9016
## sita -0.0732 -0.0199  0.2654  0.0191  0.2030 -0.8230  0.3621       .
## sulf  0.1662  0.1588  0.5011  0.1978  0.4178 -0.6188  0.5820 -0.1796
## vild -0.2005 -0.1474  0.1386 -0.1084  0.0760 -0.9495  0.2354 -0.4854
##         sulf    vild
## acar -0.6095 -0.4552
## benf -0.7726 -0.5577
## metf -0.8482 -0.6896
## migl -0.8111 -0.5962
## piog -0.8361 -0.6569
## plac  0.2602  0.4505
## rosi -0.9427 -0.7683
## sita -0.4406 -0.2254
## sulf       . -0.0467
## vild -0.5677       .
## 
## Upper 95%-confidence limit:
##         acar    benf   metf   migl   piog    plac   rosi    sita    sulf
## acar       .  0.4054 0.5113 0.4438 0.4876 -0.6147 0.5983  0.0732 -0.1662
## benf  0.2497       . 0.4841 0.3908 0.4513 -0.6561 0.5627  0.0199 -0.1588
## metf -0.0622  0.0662      . 0.1046 0.0891 -0.9973 0.2203 -0.2654 -0.5011
## migl  0.2107  0.3133 0.4450      . 0.4123 -0.6952 0.5236 -0.0191 -0.1978
## piog  0.0094  0.1288 0.1845 0.1673      . -0.9178 0.2957 -0.2030 -0.4178
## plac  1.0401  1.1543 1.2309 1.1927 1.2151       . 1.2953  0.8230  0.6188
## rosi -0.1506 -0.0306 0.0449 0.0078 0.0249 -1.1084      . -0.3621 -0.5820
## sita  0.5879  0.6903 0.8228 0.7287 0.7899 -0.3170 0.9016       .  0.1796
## sulf  0.6095  0.7726 0.8482 0.8111 0.8361 -0.2602 0.9427  0.4406       .
## vild  0.4552  0.5577 0.6896 0.5962 0.6569 -0.4505 0.7683  0.2254  0.0467
##         vild
## acar  0.2005
## benf  0.1474
## metf -0.1386
## migl  0.1084
## piog -0.0760
## plac  0.9495
## rosi -0.2354
## sita  0.4854
## sulf  0.5677
## vild       .
## 
## Random effects model
## 
## Treatment estimate (sm = 'MD'):
##         acar    benf    metf    migl    piog    plac   rosi    sita
## acar       . -0.1106  0.2850  0.1079  0.2873 -0.8418 0.3917 -0.2718
## benf  0.1106       .  0.3956  0.2186  0.3979 -0.7311 0.5023 -0.1611
## metf -0.2850 -0.3956       . -0.1770  0.0023 -1.1268 0.1067 -0.5568
## migl -0.1079 -0.2186  0.1770       .  0.1794 -0.9497 0.2837 -0.3797
## piog -0.2873 -0.3979 -0.0023 -0.1794       . -1.1291 0.1044 -0.5591
## plac  0.8418  0.7311  1.1268  0.9497  1.1291       . 1.2335  0.5700
## rosi -0.3917 -0.5023 -0.1067 -0.2837 -0.1044 -1.2335      . -0.6635
## sita  0.2718  0.1611  0.5568  0.3797  0.5591 -0.5700 0.6635       .
## sulf  0.4252  0.3146  0.7102  0.5332  0.7125 -0.4166 0.8169  0.1534
## vild  0.1418  0.0311  0.4268  0.2497  0.4291 -0.7000 0.5335 -0.1300
##         sulf    vild
## acar -0.4252 -0.1418
## benf -0.3146 -0.0311
## metf -0.7102 -0.4268
## migl -0.5332 -0.2497
## piog -0.7125 -0.4291
## plac  0.4166  0.7000
## rosi -0.8169 -0.5335
## sita -0.1534  0.1300
## sulf       .  0.2834
## vild -0.2834       .
## 
## Lower 95%-confidence limit:
##         acar    benf    metf    migl    piog    plac    rosi    sita
## acar       . -0.8499 -0.2208 -0.5542 -0.3313 -1.3236 -0.1189 -1.1166
## benf -0.6286       . -0.2414 -0.5030 -0.3089 -1.2918 -0.1118 -1.0534
## metf -0.7908 -1.0327       . -0.7227 -0.4398 -1.4291 -0.2170 -1.3138
## migl -0.7701 -0.9402 -0.3686       . -0.4465 -1.4040 -0.2350 -1.2092
## piog -0.9059 -1.1048 -0.4444 -0.8052       . -1.5596 -0.3347 -1.3758
## plac  0.3600  0.1705  0.8244  0.4955  0.6986       .  0.9830 -0.1240
## rosi -0.9023 -1.1164 -0.4304 -0.8025 -0.5435 -1.4839       . -1.4013
## sita -0.5731 -0.7311 -0.2002 -0.4497 -0.2576 -1.2640 -0.0744       .
## sulf -0.0951 -0.4184  0.2491 -0.1220  0.1205 -0.8887  0.3521 -0.6859
## vild -0.7020 -0.8601 -0.3291 -0.5787 -0.3865 -1.3927 -0.2032 -1.1106
##         sulf    vild
## acar -0.9456 -0.9856
## benf -1.0476 -0.9224
## metf -1.1713 -1.1826
## migl -1.1883 -1.0781
## piog -1.3045 -1.2447
## plac -0.0556  0.0073
## rosi -1.2817 -1.2701
## sita -0.9928 -0.8506
## sulf       . -0.5549
## vild -1.1218       .
## 
## Upper 95%-confidence limit:
##        acar   benf   metf   migl   piog    plac   rosi   sita    sulf
## acar      . 0.6286 0.7908 0.7701 0.9059 -0.3600 0.9023 0.5731  0.0951
## benf 0.8499      . 1.0327 0.9402 1.1048 -0.1705 1.1164 0.7311  0.4184
## metf 0.2208 0.2414      . 0.3686 0.4444 -0.8244 0.4304 0.2002 -0.2491
## migl 0.5542 0.5030 0.7227      . 0.8052 -0.4955 0.8025 0.4497  0.1220
## piog 0.3313 0.3089 0.4398 0.4465      . -0.6986 0.5435 0.2576 -0.1205
## plac 1.3236 1.2918 1.4291 1.4040 1.5596       . 1.4839 1.2640  0.8887
## rosi 0.1189 0.1118 0.2170 0.2350 0.3347 -0.9830      . 0.0744 -0.3521
## sita 1.1166 1.0534 1.3138 1.2092 1.3758  0.1240 1.4013      .  0.6859
## sulf 0.9456 1.0476 1.1713 1.1883 1.3045  0.0556 1.2817 0.9928       .
## vild 0.9856 0.9224 1.1826 1.0781 1.2447 -0.0073 1.2701 0.8506  0.5549
##        vild
## acar 0.7020
## benf 0.8601
## metf 0.3291
## migl 0.5787
## piog 0.3865
## plac 1.3927
## rosi 0.2032
## sita 1.1106
## sulf 1.1218
## vild      .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.1087; I^2 = 81.4%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                     Q d.f.  p-value
## Total           96.99   18 < 0.0001
## Within designs  74.46   11 < 0.0001
## Between designs 22.53    7   0.0021
data(Senn2013)
# Fixed effect model (default)
net1 <- netmeta(TE, seTE, treat1, treat2, studlab, data=Senn2013)
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
net1
## Original data (with adjusted standard errors for multi-arm studies):
## 
##                    treat1 treat2    TE   seTE seTE.adj narms multiarm
## DeFronzo1995         metf   plac -1.90 0.1414   0.1414     2         
## Lewin2007            metf   plac -0.82 0.0992   0.0992     2         
## Willms1999           acar   metf  0.20 0.3579   0.3884     3        *
## Davidson2007         plac   rosi  1.34 0.1435   0.1435     2         
## Wolffenbuttel1999    plac   rosi  1.10 0.1141   0.1141     2         
## Kipnes2001           piog   plac -1.30 0.1268   0.1268     2         
## Kerenyi2004          plac   rosi  0.77 0.1078   0.1078     2         
## Hanefeld2004         metf   piog -0.16 0.0849   0.0849     2         
## Derosa2004           piog   rosi  0.10 0.1831   0.1831     2         
## Baksi2004            plac   rosi  1.30 0.1014   0.1014     2         
## Rosenstock2008       plac   rosi  1.09 0.2263   0.2263     2         
## Zhu2003              plac   rosi  1.50 0.1624   0.1624     2         
## Yang2003             metf   rosi  0.14 0.2239   0.2239     2         
## Vongthavaravat2002   rosi   sulf -1.20 0.1436   0.1436     2         
## Oyama2008            acar   sulf -0.40 0.1549   0.1549     2         
## Costa1997            acar   plac -0.80 0.1432   0.1432     2         
## Hermansen2007        plac   sita  0.57 0.1291   0.1291     2         
## Garber2008           plac   vild  0.70 0.1273   0.1273     2         
## Alex1998             metf   sulf -0.37 0.1184   0.1184     2         
## Johnston1994         migl   plac -0.74 0.1839   0.1839     2         
## Johnston1998a        migl   plac -1.41 0.2235   0.2235     2         
## Kim2007              metf   rosi  0.00 0.2339   0.2339     2         
## Johnston1998b        migl   plac -0.68 0.2828   0.2828     2         
## Gonzalez-Ortiz2004   metf   plac -0.40 0.4356   0.4356     2         
## Stucci1996           benf   plac -0.23 0.3467   0.3467     2         
## Moulin2006           benf   plac -1.01 0.1366   0.1366     2         
## Willms1999           metf   plac -1.20 0.3758   0.4125     3        *
## Willms1999           acar   plac -1.00 0.4669   0.8242     3        *
## 
## Number of treatment arms (by study):
##                    narms
## Alex1998               2
## Baksi2004              2
## Costa1997              2
## Davidson2007           2
## DeFronzo1995           2
## Derosa2004             2
## Garber2008             2
## Gonzalez-Ortiz2004     2
## Hanefeld2004           2
## Hermansen2007          2
## Johnston1994           2
## Johnston1998a          2
## Johnston1998b          2
## Kerenyi2004            2
## Kim2007                2
## Kipnes2001             2
## Lewin2007              2
## Moulin2006             2
## Oyama2008              2
## Rosenstock2008         2
## Stucci1996             2
## Vongthavaravat2002     2
## Willms1999             3
## Wolffenbuttel1999      2
## Yang2003               2
## Zhu2003                2
## 
## Results (fixed effect model):
## 
##                    treat1 treat2                      95%-CI     Q
## DeFronzo1995         metf   plac -1.1141  [-1.2309; -0.9973] 30.89
## Lewin2007            metf   plac -1.1141  [-1.2309; -0.9973]  8.79
## Willms1999           acar   metf  0.2867  [ 0.0622;  0.5113]  0.05
## Davidson2007         plac   rosi  1.2018  [ 1.1084;  1.2953]  0.93
## Wolffenbuttel1999    plac   rosi  1.2018  [ 1.1084;  1.2953]  0.80
## Kipnes2001           piog   plac -1.0664  [-1.2151; -0.9178]  3.39
## Kerenyi2004          plac   rosi  1.2018  [ 1.1084;  1.2953] 16.05
## Hanefeld2004         metf   piog -0.0477  [-0.1845;  0.0891]  1.75
## Derosa2004           piog   rosi  0.1354  [-0.0249;  0.2957]  0.04
## Baksi2004            plac   rosi  1.2018  [ 1.1084;  1.2953]  0.94
## Rosenstock2008       plac   rosi  1.2018  [ 1.1084;  1.2953]  0.24
## Zhu2003              plac   rosi  1.2018  [ 1.1084;  1.2953]  3.37
## Yang2003             metf   rosi  0.0877  [-0.0449;  0.2203]  0.05
## Vongthavaravat2002   rosi   sulf -0.7623  [-0.9427; -0.5820]  9.29
## Oyama2008            acar   sulf -0.3879  [-0.6095; -0.1662]  0.01
## Costa1997            acar   plac -0.8274  [-1.0401; -0.6147]  0.04
## Hermansen2007        plac   sita  0.5700  [ 0.3170;  0.8230]  0.00
## Garber2008           plac   vild  0.7000  [ 0.4505;  0.9495]  0.00
## Alex1998             metf   sulf -0.6746  [-0.8482; -0.5011]  6.62
## Johnston1994         migl   plac -0.9439  [-1.1927; -0.6952]  1.23
## Johnston1998a        migl   plac -0.9439  [-1.1927; -0.6952]  4.35
## Kim2007              metf   rosi  0.0877  [-0.0449;  0.2203]  0.14
## Johnston1998b        migl   plac -0.9439  [-1.1927; -0.6952]  0.87
## Gonzalez-Ortiz2004   metf   plac -1.1141  [-1.2309; -0.9973]  2.69
## Stucci1996           benf   plac -0.9052  [-1.1543; -0.6561]  3.79
## Moulin2006           benf   plac -0.9052  [-1.1543; -0.6561]  0.59
## Willms1999           metf   plac -1.1141  [-1.2309; -0.9973]  0.04
## Willms1999           acar   plac -0.8274  [-1.0401; -0.6147]  0.04
##                    leverage
## DeFronzo1995           0.18
## Lewin2007              0.36
## Willms1999             0.09
## Davidson2007           0.11
## Wolffenbuttel1999      0.17
## Kipnes2001             0.36
## Kerenyi2004            0.20
## Hanefeld2004           0.68
## Derosa2004             0.20
## Baksi2004              0.22
## Rosenstock2008         0.04
## Zhu2003                0.09
## Yang2003               0.09
## Vongthavaravat2002     0.41
## Oyama2008              0.53
## Costa1997              0.57
## Hermansen2007          1.00
## Garber2008             1.00
## Alex1998               0.56
## Johnston1994           0.48
## Johnston1998a          0.32
## Kim2007                0.08
## Johnston1998b          0.20
## Gonzalez-Ortiz2004     0.02
## Stucci1996             0.13
## Moulin2006             0.87
## Willms1999             0.02
## Willms1999             0.02
## 
## Number of studies: k = 26
## Number of treatments: n = 10
## Number of pairwise comparisons: m = 28
## Number of designs: d = 15
## 
## Fixed effect model
## 
## Treatment estimate (sm = ''):
##         acar    benf    metf    migl    piog    plac   rosi    sita
## acar       .  0.0778  0.2867  0.1166  0.2391 -0.8274 0.3745 -0.2574
## benf -0.0778       .  0.2089  0.0387  0.1612 -0.9052 0.2967 -0.3352
## metf -0.2867 -0.2089       . -0.1702 -0.0477 -1.1141 0.0877 -0.5441
## migl -0.1166 -0.0387  0.1702       .  0.1225 -0.9439 0.2579 -0.3739
## piog -0.2391 -0.1612  0.0477 -0.1225       . -1.0664 0.1354 -0.4964
## plac  0.8274  0.9052  1.1141  0.9439  1.0664       . 1.2018  0.5700
## rosi -0.3745 -0.2967 -0.0877 -0.2579 -0.1354 -1.2018      . -0.6318
## sita  0.2574  0.3352  0.5441  0.3739  0.4964 -0.5700 0.6318       .
## sulf  0.3879  0.4657  0.6746  0.5044  0.6269 -0.4395 0.7623  0.1305
## vild  0.1274  0.2052  0.4141  0.2439  0.3664 -0.7000 0.5018 -0.1300
##         sulf    vild
## acar -0.3879 -0.1274
## benf -0.4657 -0.2052
## metf -0.6746 -0.4141
## migl -0.5044 -0.2439
## piog -0.6269 -0.3664
## plac  0.4395  0.7000
## rosi -0.7623 -0.5018
## sita -0.1305  0.1300
## sulf       .  0.2605
## vild -0.2605       .
## 
## Lower 95%-confidence limit:
##         acar    benf    metf    migl    piog    plac    rosi    sita
## acar       . -0.2497  0.0622 -0.2107 -0.0094 -1.0401  0.1506 -0.5879
## benf -0.4054       . -0.0662 -0.3133 -0.1288 -1.1543  0.0306 -0.6903
## metf -0.5113 -0.4841       . -0.4450 -0.1845 -1.2309 -0.0449 -0.8228
## migl -0.4438 -0.3908 -0.1046       . -0.1673 -1.1927 -0.0078 -0.7287
## piog -0.4876 -0.4513 -0.0891 -0.4123       . -1.2151 -0.0249 -0.7899
## plac  0.6147  0.6561  0.9973  0.6952  0.9178       .  1.1084  0.3170
## rosi -0.5983 -0.5627 -0.2203 -0.5236 -0.2957 -1.2953       . -0.9016
## sita -0.0732 -0.0199  0.2654  0.0191  0.2030 -0.8230  0.3621       .
## sulf  0.1662  0.1588  0.5011  0.1978  0.4178 -0.6188  0.5820 -0.1796
## vild -0.2005 -0.1474  0.1386 -0.1084  0.0760 -0.9495  0.2354 -0.4854
##         sulf    vild
## acar -0.6095 -0.4552
## benf -0.7726 -0.5577
## metf -0.8482 -0.6896
## migl -0.8111 -0.5962
## piog -0.8361 -0.6569
## plac  0.2602  0.4505
## rosi -0.9427 -0.7683
## sita -0.4406 -0.2254
## sulf       . -0.0467
## vild -0.5677       .
## 
## Upper 95%-confidence limit:
##         acar    benf   metf   migl   piog    plac   rosi    sita    sulf
## acar       .  0.4054 0.5113 0.4438 0.4876 -0.6147 0.5983  0.0732 -0.1662
## benf  0.2497       . 0.4841 0.3908 0.4513 -0.6561 0.5627  0.0199 -0.1588
## metf -0.0622  0.0662      . 0.1046 0.0891 -0.9973 0.2203 -0.2654 -0.5011
## migl  0.2107  0.3133 0.4450      . 0.4123 -0.6952 0.5236 -0.0191 -0.1978
## piog  0.0094  0.1288 0.1845 0.1673      . -0.9178 0.2957 -0.2030 -0.4178
## plac  1.0401  1.1543 1.2309 1.1927 1.2151       . 1.2953  0.8230  0.6188
## rosi -0.1506 -0.0306 0.0449 0.0078 0.0249 -1.1084      . -0.3621 -0.5820
## sita  0.5879  0.6903 0.8228 0.7287 0.7899 -0.3170 0.9016       .  0.1796
## sulf  0.6095  0.7726 0.8482 0.8111 0.8361 -0.2602 0.9427  0.4406       .
## vild  0.4552  0.5577 0.6896 0.5962 0.6569 -0.4505 0.7683  0.2254  0.0467
##         vild
## acar  0.2005
## benf  0.1474
## metf -0.1386
## migl  0.1084
## piog -0.0760
## plac  0.9495
## rosi -0.2354
## sita  0.4854
## sulf  0.5677
## vild       .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.1087; I^2 = 81.4%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                     Q d.f.  p-value
## Total           96.99   18 < 0.0001
## Within designs  74.46   11 < 0.0001
## Between designs 22.53    7   0.0021
net1$Q.decomp
##    treat1 treat2           Q df       pval.Q
## 1    acar   metf  0.00000000  0 1.000000e+00
## 2    acar   plac  0.05715942  1 8.110433e-01
## 3    acar   sulf  0.00000000  0 1.000000e+00
## 4    benf   plac  4.38137713  1 3.633363e-02
## 5    metf   piog  0.00000000  0 1.000000e+00
## 6    metf   plac 42.17838677  3 3.677205e-09
## 7    metf   rosi  0.18695080  1 6.654667e-01
## 8    metf   sulf  0.00000000  0 1.000000e+00
## 9    migl   plac  6.44927778  2 3.977014e-02
## 10   piog   plac  0.00000000  0 1.000000e+00
## 11   piog   rosi  0.00000000  0 1.000000e+00
## 12   plac   rosi 21.27336195  5 7.191616e-04
## 13   plac   sita  0.00000000  0 1.000000e+00
## 14   plac   vild  0.00000000  0 1.000000e+00
## 15   rosi   sulf  0.00000000  0 1.000000e+00
# Forest plot
forest(net1, ref="plac")

# Comparison with reference group
netmeta(TE, seTE, treat1, treat2, studlab, data=Senn2013,
reference="plac")
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
## Original data (with adjusted standard errors for multi-arm studies):
## 
##                    treat1 treat2    TE   seTE seTE.adj narms multiarm
## DeFronzo1995         metf   plac -1.90 0.1414   0.1414     2         
## Lewin2007            metf   plac -0.82 0.0992   0.0992     2         
## Willms1999           acar   metf  0.20 0.3579   0.3884     3        *
## Davidson2007         plac   rosi  1.34 0.1435   0.1435     2         
## Wolffenbuttel1999    plac   rosi  1.10 0.1141   0.1141     2         
## Kipnes2001           piog   plac -1.30 0.1268   0.1268     2         
## Kerenyi2004          plac   rosi  0.77 0.1078   0.1078     2         
## Hanefeld2004         metf   piog -0.16 0.0849   0.0849     2         
## Derosa2004           piog   rosi  0.10 0.1831   0.1831     2         
## Baksi2004            plac   rosi  1.30 0.1014   0.1014     2         
## Rosenstock2008       plac   rosi  1.09 0.2263   0.2263     2         
## Zhu2003              plac   rosi  1.50 0.1624   0.1624     2         
## Yang2003             metf   rosi  0.14 0.2239   0.2239     2         
## Vongthavaravat2002   rosi   sulf -1.20 0.1436   0.1436     2         
## Oyama2008            acar   sulf -0.40 0.1549   0.1549     2         
## Costa1997            acar   plac -0.80 0.1432   0.1432     2         
## Hermansen2007        plac   sita  0.57 0.1291   0.1291     2         
## Garber2008           plac   vild  0.70 0.1273   0.1273     2         
## Alex1998             metf   sulf -0.37 0.1184   0.1184     2         
## Johnston1994         migl   plac -0.74 0.1839   0.1839     2         
## Johnston1998a        migl   plac -1.41 0.2235   0.2235     2         
## Kim2007              metf   rosi  0.00 0.2339   0.2339     2         
## Johnston1998b        migl   plac -0.68 0.2828   0.2828     2         
## Gonzalez-Ortiz2004   metf   plac -0.40 0.4356   0.4356     2         
## Stucci1996           benf   plac -0.23 0.3467   0.3467     2         
## Moulin2006           benf   plac -1.01 0.1366   0.1366     2         
## Willms1999           metf   plac -1.20 0.3758   0.4125     3        *
## Willms1999           acar   plac -1.00 0.4669   0.8242     3        *
## 
## Number of treatment arms (by study):
##                    narms
## Alex1998               2
## Baksi2004              2
## Costa1997              2
## Davidson2007           2
## DeFronzo1995           2
## Derosa2004             2
## Garber2008             2
## Gonzalez-Ortiz2004     2
## Hanefeld2004           2
## Hermansen2007          2
## Johnston1994           2
## Johnston1998a          2
## Johnston1998b          2
## Kerenyi2004            2
## Kim2007                2
## Kipnes2001             2
## Lewin2007              2
## Moulin2006             2
## Oyama2008              2
## Rosenstock2008         2
## Stucci1996             2
## Vongthavaravat2002     2
## Willms1999             3
## Wolffenbuttel1999      2
## Yang2003               2
## Zhu2003                2
## 
## Results (fixed effect model):
## 
##                    treat1 treat2                      95%-CI     Q
## DeFronzo1995         metf   plac -1.1141  [-1.2309; -0.9973] 30.89
## Lewin2007            metf   plac -1.1141  [-1.2309; -0.9973]  8.79
## Willms1999           acar   metf  0.2867  [ 0.0622;  0.5113]  0.05
## Davidson2007         plac   rosi  1.2018  [ 1.1084;  1.2953]  0.93
## Wolffenbuttel1999    plac   rosi  1.2018  [ 1.1084;  1.2953]  0.80
## Kipnes2001           piog   plac -1.0664  [-1.2151; -0.9178]  3.39
## Kerenyi2004          plac   rosi  1.2018  [ 1.1084;  1.2953] 16.05
## Hanefeld2004         metf   piog -0.0477  [-0.1845;  0.0891]  1.75
## Derosa2004           piog   rosi  0.1354  [-0.0249;  0.2957]  0.04
## Baksi2004            plac   rosi  1.2018  [ 1.1084;  1.2953]  0.94
## Rosenstock2008       plac   rosi  1.2018  [ 1.1084;  1.2953]  0.24
## Zhu2003              plac   rosi  1.2018  [ 1.1084;  1.2953]  3.37
## Yang2003             metf   rosi  0.0877  [-0.0449;  0.2203]  0.05
## Vongthavaravat2002   rosi   sulf -0.7623  [-0.9427; -0.5820]  9.29
## Oyama2008            acar   sulf -0.3879  [-0.6095; -0.1662]  0.01
## Costa1997            acar   plac -0.8274  [-1.0401; -0.6147]  0.04
## Hermansen2007        plac   sita  0.5700  [ 0.3170;  0.8230]  0.00
## Garber2008           plac   vild  0.7000  [ 0.4505;  0.9495]  0.00
## Alex1998             metf   sulf -0.6746  [-0.8482; -0.5011]  6.62
## Johnston1994         migl   plac -0.9439  [-1.1927; -0.6952]  1.23
## Johnston1998a        migl   plac -0.9439  [-1.1927; -0.6952]  4.35
## Kim2007              metf   rosi  0.0877  [-0.0449;  0.2203]  0.14
## Johnston1998b        migl   plac -0.9439  [-1.1927; -0.6952]  0.87
## Gonzalez-Ortiz2004   metf   plac -1.1141  [-1.2309; -0.9973]  2.69
## Stucci1996           benf   plac -0.9052  [-1.1543; -0.6561]  3.79
## Moulin2006           benf   plac -0.9052  [-1.1543; -0.6561]  0.59
## Willms1999           metf   plac -1.1141  [-1.2309; -0.9973]  0.04
## Willms1999           acar   plac -0.8274  [-1.0401; -0.6147]  0.04
##                    leverage
## DeFronzo1995           0.18
## Lewin2007              0.36
## Willms1999             0.09
## Davidson2007           0.11
## Wolffenbuttel1999      0.17
## Kipnes2001             0.36
## Kerenyi2004            0.20
## Hanefeld2004           0.68
## Derosa2004             0.20
## Baksi2004              0.22
## Rosenstock2008         0.04
## Zhu2003                0.09
## Yang2003               0.09
## Vongthavaravat2002     0.41
## Oyama2008              0.53
## Costa1997              0.57
## Hermansen2007          1.00
## Garber2008             1.00
## Alex1998               0.56
## Johnston1994           0.48
## Johnston1998a          0.32
## Kim2007                0.08
## Johnston1998b          0.20
## Gonzalez-Ortiz2004     0.02
## Stucci1996             0.13
## Moulin2006             0.87
## Willms1999             0.02
## Willms1999             0.02
## 
## Number of studies: k = 26
## Number of treatments: n = 10
## Number of pairwise comparisons: m = 28
## Number of designs: d = 15
## 
## Fixed effect model
## 
## Treatment estimate (sm = '', comparison: other treatments vs 'plac'):
##                           95%-CI
## acar -0.8274  [-1.0401; -0.6147]
## benf -0.9052  [-1.1543; -0.6561]
## metf -1.1141  [-1.2309; -0.9973]
## migl -0.9439  [-1.1927; -0.6952]
## piog -1.0664  [-1.2151; -0.9178]
## plac       .                   .
## rosi -1.2018  [-1.2953; -1.1084]
## sita -0.5700  [-0.8230; -0.3170]
## sulf -0.4395  [-0.6188; -0.2602]
## vild -0.7000  [-0.9495; -0.4505]
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.1087; I^2 = 81.4%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                     Q d.f.  p-value
## Total           96.99   18 < 0.0001
## Within designs  74.46   11 < 0.0001
## Between designs 22.53    7   0.0021
# Random effects model
net2 <- netmeta(TE, seTE, treat1, treat2, studlab, data=Senn2013,
comb.random = TRUE)
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
net2
## Original data (with adjusted standard errors for multi-arm studies):
## 
##                    treat1 treat2    TE   seTE seTE.adj narms multiarm
## DeFronzo1995         metf   plac -1.90 0.1414   0.1414     2         
## Lewin2007            metf   plac -0.82 0.0992   0.0992     2         
## Willms1999           acar   metf  0.20 0.3579   0.3884     3        *
## Davidson2007         plac   rosi  1.34 0.1435   0.1435     2         
## Wolffenbuttel1999    plac   rosi  1.10 0.1141   0.1141     2         
## Kipnes2001           piog   plac -1.30 0.1268   0.1268     2         
## Kerenyi2004          plac   rosi  0.77 0.1078   0.1078     2         
## Hanefeld2004         metf   piog -0.16 0.0849   0.0849     2         
## Derosa2004           piog   rosi  0.10 0.1831   0.1831     2         
## Baksi2004            plac   rosi  1.30 0.1014   0.1014     2         
## Rosenstock2008       plac   rosi  1.09 0.2263   0.2263     2         
## Zhu2003              plac   rosi  1.50 0.1624   0.1624     2         
## Yang2003             metf   rosi  0.14 0.2239   0.2239     2         
## Vongthavaravat2002   rosi   sulf -1.20 0.1436   0.1436     2         
## Oyama2008            acar   sulf -0.40 0.1549   0.1549     2         
## Costa1997            acar   plac -0.80 0.1432   0.1432     2         
## Hermansen2007        plac   sita  0.57 0.1291   0.1291     2         
## Garber2008           plac   vild  0.70 0.1273   0.1273     2         
## Alex1998             metf   sulf -0.37 0.1184   0.1184     2         
## Johnston1994         migl   plac -0.74 0.1839   0.1839     2         
## Johnston1998a        migl   plac -1.41 0.2235   0.2235     2         
## Kim2007              metf   rosi  0.00 0.2339   0.2339     2         
## Johnston1998b        migl   plac -0.68 0.2828   0.2828     2         
## Gonzalez-Ortiz2004   metf   plac -0.40 0.4356   0.4356     2         
## Stucci1996           benf   plac -0.23 0.3467   0.3467     2         
## Moulin2006           benf   plac -1.01 0.1366   0.1366     2         
## Willms1999           metf   plac -1.20 0.3758   0.4125     3        *
## Willms1999           acar   plac -1.00 0.4669   0.8242     3        *
## 
## Number of treatment arms (by study):
##                    narms
## Alex1998               2
## Baksi2004              2
## Costa1997              2
## Davidson2007           2
## DeFronzo1995           2
## Derosa2004             2
## Garber2008             2
## Gonzalez-Ortiz2004     2
## Hanefeld2004           2
## Hermansen2007          2
## Johnston1994           2
## Johnston1998a          2
## Johnston1998b          2
## Kerenyi2004            2
## Kim2007                2
## Kipnes2001             2
## Lewin2007              2
## Moulin2006             2
## Oyama2008              2
## Rosenstock2008         2
## Stucci1996             2
## Vongthavaravat2002     2
## Willms1999             3
## Wolffenbuttel1999      2
## Yang2003               2
## Zhu2003                2
## 
## Results (fixed effect model):
## 
##                    treat1 treat2                      95%-CI     Q
## DeFronzo1995         metf   plac -1.1141  [-1.2309; -0.9973] 30.89
## Lewin2007            metf   plac -1.1141  [-1.2309; -0.9973]  8.79
## Willms1999           acar   metf  0.2867  [ 0.0622;  0.5113]  0.05
## Davidson2007         plac   rosi  1.2018  [ 1.1084;  1.2953]  0.93
## Wolffenbuttel1999    plac   rosi  1.2018  [ 1.1084;  1.2953]  0.80
## Kipnes2001           piog   plac -1.0664  [-1.2151; -0.9178]  3.39
## Kerenyi2004          plac   rosi  1.2018  [ 1.1084;  1.2953] 16.05
## Hanefeld2004         metf   piog -0.0477  [-0.1845;  0.0891]  1.75
## Derosa2004           piog   rosi  0.1354  [-0.0249;  0.2957]  0.04
## Baksi2004            plac   rosi  1.2018  [ 1.1084;  1.2953]  0.94
## Rosenstock2008       plac   rosi  1.2018  [ 1.1084;  1.2953]  0.24
## Zhu2003              plac   rosi  1.2018  [ 1.1084;  1.2953]  3.37
## Yang2003             metf   rosi  0.0877  [-0.0449;  0.2203]  0.05
## Vongthavaravat2002   rosi   sulf -0.7623  [-0.9427; -0.5820]  9.29
## Oyama2008            acar   sulf -0.3879  [-0.6095; -0.1662]  0.01
## Costa1997            acar   plac -0.8274  [-1.0401; -0.6147]  0.04
## Hermansen2007        plac   sita  0.5700  [ 0.3170;  0.8230]  0.00
## Garber2008           plac   vild  0.7000  [ 0.4505;  0.9495]  0.00
## Alex1998             metf   sulf -0.6746  [-0.8482; -0.5011]  6.62
## Johnston1994         migl   plac -0.9439  [-1.1927; -0.6952]  1.23
## Johnston1998a        migl   plac -0.9439  [-1.1927; -0.6952]  4.35
## Kim2007              metf   rosi  0.0877  [-0.0449;  0.2203]  0.14
## Johnston1998b        migl   plac -0.9439  [-1.1927; -0.6952]  0.87
## Gonzalez-Ortiz2004   metf   plac -1.1141  [-1.2309; -0.9973]  2.69
## Stucci1996           benf   plac -0.9052  [-1.1543; -0.6561]  3.79
## Moulin2006           benf   plac -0.9052  [-1.1543; -0.6561]  0.59
## Willms1999           metf   plac -1.1141  [-1.2309; -0.9973]  0.04
## Willms1999           acar   plac -0.8274  [-1.0401; -0.6147]  0.04
##                    leverage
## DeFronzo1995           0.18
## Lewin2007              0.36
## Willms1999             0.09
## Davidson2007           0.11
## Wolffenbuttel1999      0.17
## Kipnes2001             0.36
## Kerenyi2004            0.20
## Hanefeld2004           0.68
## Derosa2004             0.20
## Baksi2004              0.22
## Rosenstock2008         0.04
## Zhu2003                0.09
## Yang2003               0.09
## Vongthavaravat2002     0.41
## Oyama2008              0.53
## Costa1997              0.57
## Hermansen2007          1.00
## Garber2008             1.00
## Alex1998               0.56
## Johnston1994           0.48
## Johnston1998a          0.32
## Kim2007                0.08
## Johnston1998b          0.20
## Gonzalez-Ortiz2004     0.02
## Stucci1996             0.13
## Moulin2006             0.87
## Willms1999             0.02
## Willms1999             0.02
## 
## Results (random effects model):
## 
##                    treat1 treat2                      95%-CI
## DeFronzo1995         metf   plac -1.1268  [-1.4291; -0.8244]
## Lewin2007            metf   plac -1.1268  [-1.4291; -0.8244]
## Willms1999           acar   metf  0.2850  [-0.2208;  0.7908]
## Davidson2007         plac   rosi  1.2335  [ 0.9830;  1.4839]
## Wolffenbuttel1999    plac   rosi  1.2335  [ 0.9830;  1.4839]
## Kipnes2001           piog   plac -1.1291  [-1.5596; -0.6986]
## Kerenyi2004          plac   rosi  1.2335  [ 0.9830;  1.4839]
## Hanefeld2004         metf   piog  0.0023  [-0.4398;  0.4444]
## Derosa2004           piog   rosi  0.1044  [-0.3347;  0.5435]
## Baksi2004            plac   rosi  1.2335  [ 0.9830;  1.4839]
## Rosenstock2008       plac   rosi  1.2335  [ 0.9830;  1.4839]
## Zhu2003              plac   rosi  1.2335  [ 0.9830;  1.4839]
## Yang2003             metf   rosi  0.1067  [-0.2170;  0.4304]
## Vongthavaravat2002   rosi   sulf -0.8169  [-1.2817; -0.3521]
## Oyama2008            acar   sulf -0.4252  [-0.9456;  0.0951]
## Costa1997            acar   plac -0.8418  [-1.3236; -0.3600]
## Hermansen2007        plac   sita  0.5700  [-0.1240;  1.2640]
## Garber2008           plac   vild  0.7000  [ 0.0073;  1.3927]
## Alex1998             metf   sulf -0.7102  [-1.1713; -0.2491]
## Johnston1994         migl   plac -0.9497  [-1.4040; -0.4955]
## Johnston1998a        migl   plac -0.9497  [-1.4040; -0.4955]
## Kim2007              metf   rosi  0.1067  [-0.2170;  0.4304]
## Johnston1998b        migl   plac -0.9497  [-1.4040; -0.4955]
## Gonzalez-Ortiz2004   metf   plac -1.1268  [-1.4291; -0.8244]
## Stucci1996           benf   plac -0.7311  [-1.2918; -0.1705]
## Moulin2006           benf   plac -0.7311  [-1.2918; -0.1705]
## Willms1999           metf   plac -1.1268  [-1.4291; -0.8244]
## Willms1999           acar   plac -0.8418  [-1.3236; -0.3600]
## 
## Number of studies: k = 26
## Number of treatments: n = 10
## Number of pairwise comparisons: m = 28
## Number of designs: d = 15
## 
## Fixed effect model
## 
## Treatment estimate (sm = ''):
##         acar    benf    metf    migl    piog    plac   rosi    sita
## acar       .  0.0778  0.2867  0.1166  0.2391 -0.8274 0.3745 -0.2574
## benf -0.0778       .  0.2089  0.0387  0.1612 -0.9052 0.2967 -0.3352
## metf -0.2867 -0.2089       . -0.1702 -0.0477 -1.1141 0.0877 -0.5441
## migl -0.1166 -0.0387  0.1702       .  0.1225 -0.9439 0.2579 -0.3739
## piog -0.2391 -0.1612  0.0477 -0.1225       . -1.0664 0.1354 -0.4964
## plac  0.8274  0.9052  1.1141  0.9439  1.0664       . 1.2018  0.5700
## rosi -0.3745 -0.2967 -0.0877 -0.2579 -0.1354 -1.2018      . -0.6318
## sita  0.2574  0.3352  0.5441  0.3739  0.4964 -0.5700 0.6318       .
## sulf  0.3879  0.4657  0.6746  0.5044  0.6269 -0.4395 0.7623  0.1305
## vild  0.1274  0.2052  0.4141  0.2439  0.3664 -0.7000 0.5018 -0.1300
##         sulf    vild
## acar -0.3879 -0.1274
## benf -0.4657 -0.2052
## metf -0.6746 -0.4141
## migl -0.5044 -0.2439
## piog -0.6269 -0.3664
## plac  0.4395  0.7000
## rosi -0.7623 -0.5018
## sita -0.1305  0.1300
## sulf       .  0.2605
## vild -0.2605       .
## 
## Lower 95%-confidence limit:
##         acar    benf    metf    migl    piog    plac    rosi    sita
## acar       . -0.2497  0.0622 -0.2107 -0.0094 -1.0401  0.1506 -0.5879
## benf -0.4054       . -0.0662 -0.3133 -0.1288 -1.1543  0.0306 -0.6903
## metf -0.5113 -0.4841       . -0.4450 -0.1845 -1.2309 -0.0449 -0.8228
## migl -0.4438 -0.3908 -0.1046       . -0.1673 -1.1927 -0.0078 -0.7287
## piog -0.4876 -0.4513 -0.0891 -0.4123       . -1.2151 -0.0249 -0.7899
## plac  0.6147  0.6561  0.9973  0.6952  0.9178       .  1.1084  0.3170
## rosi -0.5983 -0.5627 -0.2203 -0.5236 -0.2957 -1.2953       . -0.9016
## sita -0.0732 -0.0199  0.2654  0.0191  0.2030 -0.8230  0.3621       .
## sulf  0.1662  0.1588  0.5011  0.1978  0.4178 -0.6188  0.5820 -0.1796
## vild -0.2005 -0.1474  0.1386 -0.1084  0.0760 -0.9495  0.2354 -0.4854
##         sulf    vild
## acar -0.6095 -0.4552
## benf -0.7726 -0.5577
## metf -0.8482 -0.6896
## migl -0.8111 -0.5962
## piog -0.8361 -0.6569
## plac  0.2602  0.4505
## rosi -0.9427 -0.7683
## sita -0.4406 -0.2254
## sulf       . -0.0467
## vild -0.5677       .
## 
## Upper 95%-confidence limit:
##         acar    benf   metf   migl   piog    plac   rosi    sita    sulf
## acar       .  0.4054 0.5113 0.4438 0.4876 -0.6147 0.5983  0.0732 -0.1662
## benf  0.2497       . 0.4841 0.3908 0.4513 -0.6561 0.5627  0.0199 -0.1588
## metf -0.0622  0.0662      . 0.1046 0.0891 -0.9973 0.2203 -0.2654 -0.5011
## migl  0.2107  0.3133 0.4450      . 0.4123 -0.6952 0.5236 -0.0191 -0.1978
## piog  0.0094  0.1288 0.1845 0.1673      . -0.9178 0.2957 -0.2030 -0.4178
## plac  1.0401  1.1543 1.2309 1.1927 1.2151       . 1.2953  0.8230  0.6188
## rosi -0.1506 -0.0306 0.0449 0.0078 0.0249 -1.1084      . -0.3621 -0.5820
## sita  0.5879  0.6903 0.8228 0.7287 0.7899 -0.3170 0.9016       .  0.1796
## sulf  0.6095  0.7726 0.8482 0.8111 0.8361 -0.2602 0.9427  0.4406       .
## vild  0.4552  0.5577 0.6896 0.5962 0.6569 -0.4505 0.7683  0.2254  0.0467
##         vild
## acar  0.2005
## benf  0.1474
## metf -0.1386
## migl  0.1084
## piog -0.0760
## plac  0.9495
## rosi -0.2354
## sita  0.4854
## sulf  0.5677
## vild       .
## 
## Random effects model
## 
## Treatment estimate (sm = ''):
##         acar    benf    metf    migl    piog    plac   rosi    sita
## acar       . -0.1106  0.2850  0.1079  0.2873 -0.8418 0.3917 -0.2718
## benf  0.1106       .  0.3956  0.2186  0.3979 -0.7311 0.5023 -0.1611
## metf -0.2850 -0.3956       . -0.1770  0.0023 -1.1268 0.1067 -0.5568
## migl -0.1079 -0.2186  0.1770       .  0.1794 -0.9497 0.2837 -0.3797
## piog -0.2873 -0.3979 -0.0023 -0.1794       . -1.1291 0.1044 -0.5591
## plac  0.8418  0.7311  1.1268  0.9497  1.1291       . 1.2335  0.5700
## rosi -0.3917 -0.5023 -0.1067 -0.2837 -0.1044 -1.2335      . -0.6635
## sita  0.2718  0.1611  0.5568  0.3797  0.5591 -0.5700 0.6635       .
## sulf  0.4252  0.3146  0.7102  0.5332  0.7125 -0.4166 0.8169  0.1534
## vild  0.1418  0.0311  0.4268  0.2497  0.4291 -0.7000 0.5335 -0.1300
##         sulf    vild
## acar -0.4252 -0.1418
## benf -0.3146 -0.0311
## metf -0.7102 -0.4268
## migl -0.5332 -0.2497
## piog -0.7125 -0.4291
## plac  0.4166  0.7000
## rosi -0.8169 -0.5335
## sita -0.1534  0.1300
## sulf       .  0.2834
## vild -0.2834       .
## 
## Lower 95%-confidence limit:
##         acar    benf    metf    migl    piog    plac    rosi    sita
## acar       . -0.8499 -0.2208 -0.5542 -0.3313 -1.3236 -0.1189 -1.1166
## benf -0.6286       . -0.2414 -0.5030 -0.3089 -1.2918 -0.1118 -1.0534
## metf -0.7908 -1.0327       . -0.7227 -0.4398 -1.4291 -0.2170 -1.3138
## migl -0.7701 -0.9402 -0.3686       . -0.4465 -1.4040 -0.2350 -1.2092
## piog -0.9059 -1.1048 -0.4444 -0.8052       . -1.5596 -0.3347 -1.3758
## plac  0.3600  0.1705  0.8244  0.4955  0.6986       .  0.9830 -0.1240
## rosi -0.9023 -1.1164 -0.4304 -0.8025 -0.5435 -1.4839       . -1.4013
## sita -0.5731 -0.7311 -0.2002 -0.4497 -0.2576 -1.2640 -0.0744       .
## sulf -0.0951 -0.4184  0.2491 -0.1220  0.1205 -0.8887  0.3521 -0.6859
## vild -0.7020 -0.8601 -0.3291 -0.5787 -0.3865 -1.3927 -0.2032 -1.1106
##         sulf    vild
## acar -0.9456 -0.9856
## benf -1.0476 -0.9224
## metf -1.1713 -1.1826
## migl -1.1883 -1.0781
## piog -1.3045 -1.2447
## plac -0.0556  0.0073
## rosi -1.2817 -1.2701
## sita -0.9928 -0.8506
## sulf       . -0.5549
## vild -1.1218       .
## 
## Upper 95%-confidence limit:
##        acar   benf   metf   migl   piog    plac   rosi   sita    sulf
## acar      . 0.6286 0.7908 0.7701 0.9059 -0.3600 0.9023 0.5731  0.0951
## benf 0.8499      . 1.0327 0.9402 1.1048 -0.1705 1.1164 0.7311  0.4184
## metf 0.2208 0.2414      . 0.3686 0.4444 -0.8244 0.4304 0.2002 -0.2491
## migl 0.5542 0.5030 0.7227      . 0.8052 -0.4955 0.8025 0.4497  0.1220
## piog 0.3313 0.3089 0.4398 0.4465      . -0.6986 0.5435 0.2576 -0.1205
## plac 1.3236 1.2918 1.4291 1.4040 1.5596       . 1.4839 1.2640  0.8887
## rosi 0.1189 0.1118 0.2170 0.2350 0.3347 -0.9830      . 0.0744 -0.3521
## sita 1.1166 1.0534 1.3138 1.2092 1.3758  0.1240 1.4013      .  0.6859
## sulf 0.9456 1.0476 1.1713 1.1883 1.3045  0.0556 1.2817 0.9928       .
## vild 0.9856 0.9224 1.1826 1.0781 1.2447 -0.0073 1.2701 0.8506  0.5549
##        vild
## acar 0.7020
## benf 0.8601
## metf 0.3291
## migl 0.5787
## piog 0.3865
## plac 1.3927
## rosi 0.2032
## sita 1.1106
## sulf 1.1218
## vild      .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.1087; I^2 = 81.4%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                     Q d.f.  p-value
## Total           96.99   18 < 0.0001
## Within designs  74.46   11 < 0.0001
## Between designs 22.53    7   0.0021
forest(net2, ref="plac")

data(smokingcessation)
# Transform data from arm-based format to contrast-based format
# Argument 'sm' has to be used for odds ratio as summary measure; by
# default the risk ratio is used in the metabin function called
# internally.
p1 <- pairwise(list(treat1, treat2, treat3),
event=list(event1, event2, event3),
n=list(n1, n2, n3),
data=smokingcessation,
sm="OR")
p1
##              TE      seTE studlab treat1 treat2 event1   n1 event2   n2
## 1  -1.051293027 0.4132432       1      A      C      9  140     23  140
## 2  -0.128527575 0.4759803       1      A      D      9  140     10  138
## 3   0.922765452 0.3997972       1      C      D     23  140     10  138
## 4  -0.001244555 0.4504070       2      B      C     11   78     12   85
## 5  -0.225333286 0.3839393       2      B      D     11   78     29  170
## 6  -0.224088731 0.3722995       2      C      D     12   85     29  170
## 7  -2.202289286 0.1430439       3      A      C     75  731    363  714
## 8  -0.870353637 0.7910933       4      A      C      2  106      9  205
## 9  -0.415648522 0.1557329       5      A      C     58  549    237 1561
## 10 -2.779683746 1.4698402       6      A      C      0   33      9   48
## 11 -2.705393275 0.6251608       7      A      C      3  100     31   98
## 12 -2.425187415 1.0422512       8      A      C      1   31     26   95
## 13 -0.443616874 0.5219769       9      A      C      6   39     17   77
## 14  0.015964936 0.1699150      10      A      B     79  702     77  694
## 15 -0.393504544 0.3265754      11      A      B     18  671     21  535
## 16 -0.390412268 0.1680177      12      A      C     64  642    107  761
## 17 -0.106335650 0.5955997      13      A      C      5   62      8   90
## 18 -0.583398287 0.2983467      14      A      C     20  234     34  237
## 19 -3.522516830 1.4969970      15      A      D      0   20      9   20
## 20 -0.679594214 0.4411158      16      A      B      8  116     19  149
## 21 -0.539679846 0.1401199      17      A      C     95 1107    143 1031
## 22  0.125505082 0.3199924      18      A      C     15  187     36  504
## 23  0.239970162 0.1736564      19      A      C     78  584     73  675
## 24 -0.038956007 0.1873842      20      A      C     69 1177     54  888
## 25  0.151684587 0.4289753      21      B      C     20   49     16   43
## 26 -1.043486306 0.4489795      22      B      D      7   66     32  127
## 27 -0.680724661 0.4092394      23      C      D     12   76     20   74
## 28  0.405465108 0.7139060      24      C      D      9   55      3   26
##    incr allstudies
## 1   0.0      FALSE
## 2   0.0      FALSE
## 3   0.0      FALSE
## 4   0.0      FALSE
## 5   0.0      FALSE
## 6   0.0      FALSE
## 7   0.0      FALSE
## 8   0.0      FALSE
## 9   0.0      FALSE
## 10  0.5      FALSE
## 11  0.0      FALSE
## 12  0.0      FALSE
## 13  0.0      FALSE
## 14  0.0      FALSE
## 15  0.0      FALSE
## 16  0.0      FALSE
## 17  0.0      FALSE
## 18  0.0      FALSE
## 19  0.5      FALSE
## 20  0.0      FALSE
## 21  0.0      FALSE
## 22  0.0      FALSE
## 23  0.0      FALSE
## 24  0.0      FALSE
## 25  0.0      FALSE
## 26  0.0      FALSE
## 27  0.0      FALSE
## 28  0.0      FALSE
# Conduct network meta-analysis
net1 <- netmeta(p1)
net1
## Original data (with adjusted standard errors for multi-arm studies):
## 
##    treat1 treat2      TE   seTE seTE.adj narms multiarm
## 1       A      C -1.0513 0.4132   0.4776     3        *
## 1       A      D -0.1285 0.4760   0.6875     3        *
## 1       C      D  0.9228 0.3998   0.4551     3        *
## 2       B      C -0.0012 0.4504   0.6707     3        *
## 2       B      D -0.2253 0.3839   0.4390     3        *
## 2       C      D -0.2241 0.3723   0.4204     3        *
## 3       A      C -2.2023 0.1430   0.1430     2         
## 4       A      C -0.8704 0.7911   0.7911     2         
## 5       A      C -0.4156 0.1557   0.1557     2         
## 6       A      C -2.7797 1.4698   1.4698     2         
## 7       A      C -2.7054 0.6252   0.6252     2         
## 8       A      C -2.4252 1.0423   1.0423     2         
## 9       A      C -0.4436 0.5220   0.5220     2         
## 10      A      B  0.0160 0.1699   0.1699     2         
## 11      A      B -0.3935 0.3266   0.3266     2         
## 12      A      C -0.3904 0.1680   0.1680     2         
## 13      A      C -0.1063 0.5956   0.5956     2         
## 14      A      C -0.5834 0.2983   0.2983     2         
## 15      A      D -3.5225 1.4970   1.4970     2         
## 16      A      B -0.6796 0.4411   0.4411     2         
## 17      A      C -0.5397 0.1401   0.1401     2         
## 18      A      C  0.1255 0.3200   0.3200     2         
## 19      A      C  0.2400 0.1737   0.1737     2         
## 20      A      C -0.0390 0.1874   0.1874     2         
## 21      B      C  0.1517 0.4290   0.4290     2         
## 22      B      D -1.0435 0.4490   0.4490     2         
## 23      C      D -0.6807 0.4092   0.4092     2         
## 24      C      D  0.4055 0.7139   0.7139     2         
## 
## Number of treatment arms (by study):
##    narms
## 1      3
## 10     2
## 11     2
## 12     2
## 13     2
## 14     2
## 15     2
## 16     2
## 17     2
## 18     2
## 19     2
## 2      3
## 20     2
## 21     2
## 22     2
## 23     2
## 24     2
## 3      2
## 4      2
## 5      2
## 6      2
## 7      2
## 8      2
## 9      2
## 
## Results (fixed effect model):
## 
##    treat1 treat2     OR            95%-CI      Q leverage
## 1       A      C 0.5208  [0.4640; 0.5846]   0.70     0.02
## 1       A      D 0.4883  [0.3379; 0.7057]   0.73     0.07
## 1       C      D 0.9376  [0.6526; 1.3472]   4.71     0.17
## 2       B      C 0.6359  [0.4894; 0.8263]   0.45     0.04
## 2       B      D 0.5963  [0.4030; 0.8822]   0.44     0.21
## 2       C      D 0.9376  [0.6526; 1.3472]   0.14     0.19
## 3       A      C 0.5208  [0.4640; 0.5846] 117.39     0.17
## 4       A      C 0.5208  [0.4640; 0.5846]   0.08     0.01
## 5       A      C 0.5208  [0.4640; 0.5846]   2.31     0.14
## 6       A      C 0.5208  [0.4640; 0.5846]   2.09     0.00
## 7       A      C 0.5208  [0.4640; 0.5846]  10.78     0.01
## 8       A      C 0.5208  [0.4640; 0.5846]   2.89     0.00
## 9       A      C 0.5208  [0.4640; 0.5846]   0.16     0.01
## 10      A      B 0.8189  [0.6397; 1.0483]   1.61     0.55
## 11      A      B 0.8189  [0.6397; 1.0483]   0.35     0.15
## 12      A      C 0.5208  [0.4640; 0.5846]   2.43     0.12
## 13      A      C 0.5208  [0.4640; 0.5846]   0.84     0.01
## 14      A      C 0.5208  [0.4640; 0.5846]   0.05     0.04
## 15      A      D 0.4883  [0.3379; 0.7057]   3.51     0.02
## 16      A      B 0.8189  [0.6397; 1.0483]   1.18     0.08
## 17      A      C 0.5208  [0.4640; 0.5846]   0.65     0.18
## 18      A      C 0.5208  [0.4640; 0.5846]   5.91     0.03
## 19      A      C 0.5208  [0.4640; 0.5846]  26.41     0.12
## 20      A      C 0.5208  [0.4640; 0.5846]  10.72     0.10
## 21      B      C 0.6359  [0.4894; 0.8263]   1.98     0.10
## 22      B      D 0.5963  [0.4030; 0.8822]   1.37     0.20
## 23      C      D 0.9376  [0.6526; 1.3472]   2.27     0.20
## 24      C      D 0.9376  [0.6526; 1.3472]   0.43     0.07
## 
## Number of studies: k = 24
## Number of treatments: n = 4
## Number of pairwise comparisons: m = 28
## Number of designs: d = 8
## 
## Fixed effect model
## 
## Treatment estimate (sm = 'OR'):
##        A      B      C      D
## A      . 0.8189 0.5208 0.4883
## B 1.2211      . 0.6359 0.5963
## C 1.9202 1.5725      . 0.9376
## D 2.0479 1.6771 1.0665      .
## 
## Lower 95%-confidence limit:
##        A      B      C      D
## A      . 0.6397 0.4640 0.3379
## B 0.9539      . 0.4894 0.4030
## C 1.7107 1.2102      . 0.6526
## D 1.4170 1.1335 0.7423      .
## 
## Upper 95%-confidence limit:
##        A      B      C      D
## A      . 1.0483 0.5846 0.7057
## B 1.5631      . 0.8263 0.8822
## C 2.1554 2.0433      . 1.3472
## D 2.9598 2.4814 1.5323      .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.5989; I^2 = 88.6%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                      Q d.f.  p-value
## Total           202.62   23 < 0.0001
## Within designs  187.40   16 < 0.0001
## Between designs  15.22    7   0.0333
# Draw network graph
netgraph(net1, points=TRUE, cex.points=3, cex=1.25)

tname <- c("No intervention","Self-help","Individual counselling","Group
counselling")
netgraph(net1, points=TRUE, cex.points=3, cex=1.25, labels=tname)

data(Woods2010)
# Transform data from long arm-based format to contrast-based format
# Argument 'sm' has to be used for odds ratio as summary measure; by
# default the risk ratio is used in the metabin function called
# internally.
p1 <- pairwise(treatment, event = r, n = N,
studlab = author, data = Woods2010, sm = "OR")
p1
##            TE      seTE       studlab      treat1     treat2 event1  n1
## 1  0.00881063 1.4173252     Boyd 1997     Placebo Salmeterol      1 227
## 2 -0.60382188 0.6311772 Calverly 2003 Fluticasone    Placebo      4 374
## 3  0.28497571 0.7672979 Calverly 2003 Fluticasone Salmeterol      4 374
## 4  0.65457491 0.8692018 Calverly 2003 Fluticasone        SFC      4 374
## 5  0.88879759 0.6940644 Calverly 2003     Placebo Salmeterol      7 361
## 6  1.25839679 0.8052894 Calverly 2003     Placebo        SFC      7 361
## 7  0.36959919 0.9158888 Calverly 2003  Salmeterol        SFC      3 372
## 8  1.41751820 1.2270043    Celli 2003     Placebo Salmeterol      2 270
##   event2  n2 incr allstudies
## 1      1 229    0      FALSE
## 2      7 361    0      FALSE
## 3      3 372    0      FALSE
## 4      2 358    0      FALSE
## 5      3 372    0      FALSE
## 6      2 358    0      FALSE
## 7      2 358    0      FALSE
## 8      1 554    0      FALSE
# Conduct network meta-analysis
net1 <- netmeta(p1)
net1
## Original data (with adjusted standard errors for multi-arm studies):
## 
##                    treat1     treat2      TE   seTE seTE.adj narms
## Boyd 1997         Placebo Salmeterol  0.0088 1.4173   1.4173     2
## Calverly 2003 Fluticasone    Placebo -0.6038 0.6312   0.7623     4
## Calverly 2003 Fluticasone Salmeterol  0.2850 0.7673   1.1578     4
## Calverly 2003 Fluticasone        SFC  0.6546 0.8692   1.4163     4
## Calverly 2003     Placebo Salmeterol  0.8888 0.6941   0.8791     4
## Calverly 2003     Placebo        SFC  1.2584 0.8053   1.0753     4
## Calverly 2003  Salmeterol        SFC  0.3696 0.9159   1.6332     4
## Celli 2003        Placebo Salmeterol  1.4175 1.2270   1.2270     2
##               multiarm
## Boyd 1997             
## Calverly 2003        *
## Calverly 2003        *
## Calverly 2003        *
## Calverly 2003        *
## Calverly 2003        *
## Calverly 2003        *
## Celli 2003            
## 
## Number of treatment arms (by study):
##               narms
## Boyd 1997         2
## Calverly 2003     4
## Celli 2003        2
## 
## Results (fixed effect model):
## 
##                    treat1     treat2     OR             95%-CI    Q
## Boyd 1997         Placebo Salmeterol 2.3678  [0.7967;  7.0370] 0.36
## Calverly 2003 Fluticasone    Placebo 0.5512  [0.1640;  1.8526] 0.00
## Calverly 2003 Fluticasone Salmeterol 1.3051  [0.3243;  5.2517] 0.00
## Calverly 2003 Fluticasone        SFC 1.9243  [0.3503; 10.5717] 0.00
## Calverly 2003     Placebo Salmeterol 2.3678  [0.7967;  7.0370] 0.00
## Calverly 2003     Placebo        SFC 3.4913  [0.7344; 16.5976] 0.00
## Calverly 2003  Salmeterol        SFC 1.4745  [0.2686;  8.0933] 0.00
## Celli 2003        Placebo Salmeterol 2.3678  [0.7967;  7.0370] 0.21
##               leverage
## Boyd 1997         0.15
## Calverly 2003     0.66
## Calverly 2003     0.38
## Calverly 2003     0.38
## Calverly 2003     0.40
## Calverly 2003     0.55
## Calverly 2003     0.28
## Celli 2003        0.21
## 
## Number of studies: k = 3
## Number of treatments: n = 4
## Number of pairwise comparisons: m = 8
## Number of designs: d = 2
## 
## Fixed effect model
## 
## Treatment estimate (sm = 'OR'):
##             Fluticasone Placebo Salmeterol    SFC
## Fluticasone           .  0.5512     1.3051 1.9243
## Placebo          1.8143       .     2.3678 3.4913
## Salmeterol       0.7662  0.4223          . 1.4745
## SFC              0.5197  0.2864     0.6782      .
## 
## Lower 95%-confidence limit:
##             Fluticasone Placebo Salmeterol    SFC
## Fluticasone           .  0.1640     0.3243 0.3503
## Placebo          0.5398       .     0.7967 0.7344
## Salmeterol       0.1904  0.1421          . 0.2686
## SFC              0.0946  0.0602     0.1236      .
## 
## Upper 95%-confidence limit:
##             Fluticasone Placebo Salmeterol     SFC
## Fluticasone           .  1.8526     5.2517 10.5717
## Placebo          6.0982       .     7.0370 16.5976
## Salmeterol       3.0834  1.2552          .  8.0933
## SFC              2.8549  1.3616     3.7225       .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0; I^2 = 0%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                    Q d.f.  p-value
## Total           0.57    2   0.7525
## Within designs  0.56    1   0.4524
## Between designs 0.00    1   0.9485
## Not run:
# Show forest plot
forest(net1, ref = "Placebo", drop = TRUE,
leftlabs = "Contrast to Placebo")