Prostate Data Set Analysis
library("epiR")
library("FRESA.CAD")
library(network)
library(GGally)
library("e1071")
library("gplots")
library("randomForest")
library(rpart)
a=as.numeric(Sys.time());
set.seed(a);
Loops <- 10
Repeats <- 5
filter <- 0.01
#ProstateData <- read.delim("~/Development/FresaPaper/prostate/prostate.txt")
#ProstateData <- read.delim("./prostate/prostate.txt")
ProstateData <- read.delim("./prostate.txt")
Prostate <- ProstateData[,-1]
rownames(Prostate) <- ProstateData[,1]
Modeling
filename = paste("ProstateModelBin",Loops,Repeats,sprintf("%5.4f",filter),"res.RDATA",sep="_")
system.time(ProstateModelBin <- FRESA.Model(formula = Class ~ 1, Prostate, CVfolds=Loops, repeats=Repeats,filter.p.value=filter,usrFitFun=svm))
save(ProstateModelBin,file=filename)
#load(file=filename)
Summary Tables
pander::pander(summary(ProstateModelBin$BSWiMS.model)$coefficients,digits=4)
Table continues below
| X37639_at |
0.002987 |
1.003 |
1.003 |
1.003 |
0.8725 |
| X38406_f_at |
-0.0002181 |
0.9997 |
0.9998 |
0.9999 |
0.8627 |
| X32598_at |
-0.001627 |
0.9976 |
0.9984 |
0.9992 |
0.8824 |
| X37720_at |
0.000783 |
1 |
1.001 |
1.001 |
0.8431 |
| X40282_s_at |
-0.0005818 |
0.9992 |
0.9994 |
0.9996 |
0.8333 |
| X41468_at |
0.00125 |
1.001 |
1.001 |
1.002 |
0.8529 |
| X37366_at |
0.001225 |
1.001 |
1.001 |
1.002 |
0.8431 |
| X41288_at |
-0.002716 |
0.9967 |
0.9973 |
0.9979 |
0.8137 |
| X32243_g_at |
-0.0026 |
0.9969 |
0.9974 |
0.9979 |
0.8137 |
| X40856_at |
-0.0008614 |
0.9988 |
0.9991 |
0.9995 |
0.8431 |
| X36601_at |
-0.0005823 |
0.9992 |
0.9994 |
0.9997 |
0.8333 |
| X37068_at |
0.01576 |
1.011 |
1.016 |
1.021 |
0.8039 |
| X33121_g_at |
0.002976 |
1.002 |
1.003 |
1.004 |
0.7941 |
| X39756_g_at |
0.001324 |
1.001 |
1.001 |
1.002 |
0.7941 |
| X1767_s_at |
-0.004538 |
0.994 |
0.9955 |
0.997 |
0.7941 |
| X36491_at |
0.002366 |
1.002 |
1.002 |
1.003 |
0.8039 |
| X39315_at |
-0.009685 |
0.9873 |
0.9904 |
0.9935 |
0.7745 |
| X575_s_at |
0.007071 |
1.005 |
1.007 |
1.009 |
0.8333 |
| X40436_g_at |
0.001017 |
1 |
1.001 |
1.002 |
0.7745 |
| X38028_at |
-0.01805 |
0.9789 |
0.9821 |
0.9853 |
0.8137 |
| X34840_at |
0.007991 |
1.005 |
1.008 |
1.011 |
0.8039 |
| X31444_s_at |
-0.00038 |
0.9995 |
0.9996 |
0.9997 |
0.7843 |
| X38044_at |
-0.005067 |
0.9928 |
0.9949 |
0.9971 |
0.8235 |
| X556_s_at |
-0.00117 |
0.9984 |
0.9988 |
0.9993 |
0.7843 |
| X769_s_at |
-0.0009848 |
0.9987 |
0.999 |
0.9994 |
0.7745 |
| X39939_at |
-0.01543 |
0.9797 |
0.9847 |
0.9897 |
0.7941 |
| X38634_at |
-0.005972 |
0.9925 |
0.994 |
0.9956 |
0.8333 |
| X36589_at |
-0.003556 |
0.995 |
0.9964 |
0.9979 |
0.7647 |
| X33198_at |
-0.008566 |
0.9889 |
0.9915 |
0.994 |
0.7941 |
| X38087_s_at |
-0.0035 |
0.9947 |
0.9965 |
0.9983 |
0.7353 |
| X914_g_at |
0.006441 |
1.004 |
1.006 |
1.009 |
0.7941 |
| X216_at |
-0.0003403 |
0.9995 |
0.9997 |
0.9998 |
0.7843 |
| X41504_s_at |
-0.002136 |
0.9971 |
0.9979 |
0.9986 |
0.7353 |
| X36864_at |
-0.005887 |
0.9908 |
0.9941 |
0.9975 |
0.7451 |
| X1980_s_at |
0.001317 |
1.001 |
1.001 |
1.002 |
0.7353 |
| X2041_i_at |
-0.01199 |
0.9824 |
0.9881 |
0.9938 |
0.7647 |
| X39545_at |
-0.01065 |
0.9849 |
0.9894 |
0.9939 |
0.7843 |
| X36587_at |
0.001083 |
1.001 |
1.001 |
1.002 |
0.7059 |
| X41385_at |
-0.008559 |
0.9886 |
0.9915 |
0.9944 |
0.7451 |
| X829_s_at |
-0.00138 |
0.9981 |
0.9986 |
0.9991 |
0.6863 |
| X38322_at |
-0.0009929 |
0.9985 |
0.999 |
0.9995 |
0.7157 |
| X32786_at |
0.0008663 |
1.001 |
1.001 |
1.001 |
0.7255 |
| X36928_at |
0.002266 |
1.001 |
1.002 |
1.003 |
0.6961 |
| X41106_at |
0.01091 |
1.005 |
1.011 |
1.017 |
0.6961 |
| X35177_at |
-0.01276 |
0.9808 |
0.9873 |
0.9939 |
0.6863 |
| X34735_at |
-0.007546 |
0.9904 |
0.9925 |
0.9946 |
0.6275 |
| X41388_at |
-0.009278 |
0.9868 |
0.9908 |
0.9948 |
0.6863 |
| X35807_at |
-0.005375 |
0.9924 |
0.9946 |
0.9969 |
0.6765 |
| X32923_r_at |
-0.0004003 |
0.9994 |
0.9996 |
0.9998 |
0.6863 |
| X41562_at |
-0.01289 |
0.9806 |
0.9872 |
0.9938 |
0.6961 |
| X34820_at |
-0.001109 |
0.9983 |
0.9989 |
0.9995 |
0.7157 |
| X37707_i_at |
-0.004092 |
0.9939 |
0.9959 |
0.9979 |
0.7255 |
| X1846_at |
0.01389 |
1.008 |
1.014 |
1.02 |
0.6373 |
| X1052_s_at |
0.0005953 |
1 |
1.001 |
1.001 |
0.6569 |
| X37736_at |
-0.003186 |
0.9951 |
0.9968 |
0.9986 |
0.6275 |
| X31687_f_at |
-0.00165 |
0.9975 |
0.9984 |
0.9992 |
0.5686 |
| X33758_f_at |
-0.007421 |
0.9896 |
0.9926 |
0.9956 |
0.5882 |
Table continues below
| X37639_at |
0.6569 |
0.9118 |
0.8727 |
0.6573 |
0.9127 |
| X38406_f_at |
0.9118 |
0.9608 |
0.8619 |
0.9108 |
0.9604 |
| X32598_at |
0.8922 |
0.9608 |
0.8808 |
0.8919 |
0.9604 |
| X37720_at |
0.8333 |
0.9412 |
0.8435 |
0.8315 |
0.9415 |
| X40282_s_at |
0.8431 |
0.9412 |
0.8315 |
0.8435 |
0.9415 |
| X41468_at |
0.7353 |
0.9314 |
0.8538 |
0.7346 |
0.9319 |
| X37366_at |
0.7843 |
0.9216 |
0.845 |
0.7842 |
0.9215 |
| X41288_at |
0.6863 |
0.9216 |
0.8131 |
0.6854 |
0.9215 |
| X32243_g_at |
0.7255 |
0.9216 |
0.8131 |
0.7254 |
0.9215 |
| X40856_at |
0.8431 |
0.9216 |
0.8423 |
0.8431 |
0.9219 |
| X36601_at |
0.8039 |
0.902 |
0.8323 |
0.8038 |
0.9015 |
| X37068_at |
0.8627 |
0.9412 |
0.8035 |
0.8615 |
0.9415 |
| X33121_g_at |
0.8529 |
0.9216 |
0.7958 |
0.8527 |
0.9219 |
| X39756_g_at |
0.8431 |
0.9412 |
0.7946 |
0.8419 |
0.9408 |
| X1767_s_at |
0.8627 |
0.9412 |
0.7923 |
0.8619 |
0.9408 |
| X36491_at |
0.8039 |
0.9118 |
0.805 |
0.8042 |
0.9123 |
| X39315_at |
0.8627 |
0.9608 |
0.7742 |
0.8631 |
0.9604 |
| X575_s_at |
0.8235 |
0.9216 |
0.8342 |
0.8231 |
0.9215 |
| X40436_g_at |
0.9412 |
0.9706 |
0.7746 |
0.9412 |
0.9704 |
| X38028_at |
0.6275 |
0.9118 |
0.8112 |
0.6242 |
0.9115 |
| X34840_at |
0.8529 |
0.9412 |
0.8038 |
0.8523 |
0.9412 |
| X31444_s_at |
0.8137 |
0.9314 |
0.7842 |
0.8138 |
0.9315 |
| X38044_at |
0.8922 |
0.951 |
0.8231 |
0.8923 |
0.9508 |
| X556_s_at |
0.8529 |
0.9412 |
0.7831 |
0.8523 |
0.9415 |
| X769_s_at |
0.8627 |
0.9608 |
0.7742 |
0.8623 |
0.9604 |
| X39939_at |
0.8529 |
0.9412 |
0.7931 |
0.8531 |
0.9412 |
| X38634_at |
0.8235 |
0.9706 |
0.8315 |
0.8235 |
0.9704 |
| X36589_at |
0.8333 |
0.902 |
0.7642 |
0.8319 |
0.9015 |
| X33198_at |
0.7941 |
0.8627 |
0.7938 |
0.7938 |
0.8627 |
| X38087_s_at |
0.8922 |
0.9216 |
0.7331 |
0.8919 |
0.9215 |
| X914_g_at |
0.8039 |
0.9118 |
0.7965 |
0.8038 |
0.9123 |
| X216_at |
0.902 |
0.9216 |
0.7827 |
0.9027 |
0.9215 |
| X41504_s_at |
0.8529 |
0.9314 |
0.7346 |
0.8538 |
0.9319 |
| X36864_at |
0.8922 |
0.9216 |
0.7442 |
0.8923 |
0.9219 |
| X1980_s_at |
0.8431 |
0.9314 |
0.7354 |
0.8431 |
0.9315 |
| X2041_i_at |
0.9314 |
0.9706 |
0.7623 |
0.9315 |
0.9704 |
| X39545_at |
0.8333 |
0.8627 |
0.7842 |
0.8327 |
0.8627 |
| X36587_at |
0.8922 |
0.951 |
0.7054 |
0.8915 |
0.9508 |
| X41385_at |
0.8529 |
0.9412 |
0.7438 |
0.8531 |
0.9412 |
| X829_s_at |
0.8137 |
0.9216 |
0.6854 |
0.8131 |
0.9215 |
| X38322_at |
0.8824 |
0.9412 |
0.7127 |
0.8819 |
0.9415 |
| X32786_at |
0.8137 |
0.9216 |
0.7254 |
0.8131 |
0.9215 |
| X36928_at |
0.8627 |
0.9216 |
0.6969 |
0.8635 |
0.9215 |
| X41106_at |
0.9314 |
0.9608 |
0.6985 |
0.9315 |
0.9604 |
| X35177_at |
0.8529 |
0.9216 |
0.685 |
0.8527 |
0.9215 |
| X34735_at |
0.8137 |
0.9118 |
0.6242 |
0.8112 |
0.9115 |
| X41388_at |
0.902 |
0.951 |
0.6858 |
0.9015 |
0.9508 |
| X35807_at |
0.8333 |
0.8627 |
0.6738 |
0.8327 |
0.8627 |
| X32923_r_at |
0.9118 |
0.9608 |
0.6854 |
0.9112 |
0.9604 |
| X41562_at |
0.902 |
0.951 |
0.695 |
0.9019 |
0.9508 |
| X34820_at |
0.8824 |
0.9118 |
0.7135 |
0.8827 |
0.9123 |
| X37707_i_at |
0.9118 |
0.9314 |
0.725 |
0.9123 |
0.9315 |
| X1846_at |
0.8725 |
0.9216 |
0.6377 |
0.8727 |
0.9215 |
| X1052_s_at |
0.8725 |
0.9118 |
0.6573 |
0.8727 |
0.9127 |
| X37736_at |
0.8824 |
0.902 |
0.6265 |
0.8819 |
0.9015 |
| X31687_f_at |
0.8824 |
0.9412 |
0.565 |
0.8819 |
0.9408 |
| X33758_f_at |
0.9118 |
0.9608 |
0.5885 |
0.9112 |
0.9604 |
| X37639_at |
0.6946 |
1.568 |
15.05 |
12.74 |
| X38406_f_at |
0.1284 |
1.092 |
3.765 |
6.671 |
| X32598_at |
0.114 |
1.057 |
3.951 |
6.291 |
| X37720_at |
0.198 |
0.5692 |
5.13 |
3.461 |
| X40282_s_at |
0.197 |
1.362 |
5.162 |
10.08 |
| X41468_at |
0.4396 |
1.571 |
9.186 |
12.89 |
| X37366_at |
0.2445 |
1.457 |
6.186 |
11.06 |
| X41288_at |
0.4474 |
1.409 |
9.146 |
10.05 |
| X32243_g_at |
0.4709 |
1.568 |
10.02 |
12.74 |
| X40856_at |
0.1528 |
1.165 |
4.355 |
7.745 |
| X36601_at |
0.1556 |
0.9523 |
4.718 |
5.665 |
| X37068_at |
0.2359 |
1.531 |
6.13 |
12.04 |
| X33121_g_at |
0.2033 |
1.289 |
5.063 |
8.606 |
| X39756_g_at |
0.3061 |
1.532 |
6.945 |
12.15 |
| X1767_s_at |
0.2302 |
1.489 |
5.944 |
11.26 |
| X36491_at |
0.2295 |
1.106 |
6.045 |
6.944 |
| X39315_at |
0.2407 |
1.571 |
6.065 |
12.89 |
| X575_s_at |
0.2899 |
1.494 |
6.89 |
11.49 |
| X40436_g_at |
0.1032 |
1.058 |
3.635 |
6.298 |
| X38028_at |
0.5262 |
1.603 |
10.87 |
13.75 |
| X34840_at |
0.2357 |
1.295 |
6.075 |
8.598 |
| X31444_s_at |
0.2745 |
1.369 |
6.685 |
9.528 |
| X38044_at |
0.1491 |
1.488 |
4.509 |
11.27 |
| X556_s_at |
0.1828 |
1.285 |
5.111 |
8.869 |
| X769_s_at |
0.221 |
1.568 |
5.504 |
12.74 |
| X39939_at |
0.2117 |
1.489 |
5.954 |
11.26 |
| X38634_at |
0.321 |
1.363 |
7.398 |
9.896 |
| X36589_at |
0.2025 |
0.8538 |
4.873 |
4.913 |
| X33198_at |
0.291 |
1.374 |
6.488 |
9.562 |
| X38087_s_at |
0.1202 |
1.209 |
3.748 |
7.809 |
| X914_g_at |
0.1635 |
0.9138 |
5.045 |
5.539 |
| X216_at |
0.163 |
1.172 |
4.738 |
7.355 |
| X41504_s_at |
0.2142 |
1.446 |
5.579 |
10.7 |
| X36864_at |
0.101 |
0.8154 |
3.42 |
4.62 |
| X1980_s_at |
0.2205 |
1.094 |
6.054 |
6.64 |
| X2041_i_at |
0.1283 |
1.028 |
4.106 |
6.249 |
| X39545_at |
0.1745 |
1.451 |
4.588 |
10.64 |
| X36587_at |
0.1834 |
1.334 |
4.878 |
9.042 |
| X41385_at |
0.1768 |
1.688 |
5.774 |
15.95 |
| X829_s_at |
0.215 |
1.058 |
5.579 |
6.298 |
| X38322_at |
0.1218 |
0.9631 |
4.025 |
6.376 |
| X32786_at |
0.2589 |
1.137 |
6.068 |
6.976 |
| X36928_at |
0.177 |
1.34 |
4.894 |
9.402 |
| X41106_at |
0.09401 |
1.111 |
3.58 |
7.369 |
| X35177_at |
0.1108 |
1.212 |
3.781 |
7.729 |
| X34735_at |
0.3082 |
1.529 |
7.048 |
11.98 |
| X41388_at |
0.139 |
1.209 |
4.525 |
7.809 |
| X35807_at |
0.1881 |
1.491 |
4.651 |
11.3 |
| X32923_r_at |
0.07493 |
0.82 |
3.198 |
4.557 |
| X41562_at |
0.1012 |
1.058 |
3.776 |
6.298 |
| X34820_at |
0.1156 |
1.011 |
3.807 |
6.107 |
| X37707_i_at |
0.1032 |
1.092 |
4.05 |
6.671 |
| X1846_at |
0.1607 |
1.415 |
4.621 |
10.23 |
| X1052_s_at |
0.09526 |
1.248 |
3.653 |
8.261 |
| X37736_at |
0.1054 |
0.9185 |
3.53 |
5.271 |
| X31687_f_at |
0.104 |
1.02 |
3.66 |
5.988 |
| X33758_f_at |
0.1576 |
1.571 |
4.811 |
12.89 |
B:SWiMS Heat Map Plots
opg <- par(no.readonly = TRUE)
par(mfrow=c(1,1))
hm <- heatMaps(ProstateModelBin$BSWiMS.model$baggingAnalysis$RelativeFrequency,Outcome="Class",data=Prostate,hCluster = TRUE,Scale=TRUE,xlab="Subject ID",transpose=TRUE,title="B:SWIMS Features")
#> [1] 2

par(opg)
ROC Plots
AccCITable <- NULL
BErrorCITable <- NULL
rp <- plotModels.ROC(ProstateModelBin$cvObject$LASSO.testPredictions,theCVfolds=Loops,main="LASSO",cex=0.90)

ci <- epi.tests(rp$predictionTable)
AccCITable <- rbind(AccCITable,ci$elements$diag.acc)
BErrorCITable <- rbind(BErrorCITable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
rp <- plotModels.ROC(ProstateModelBin$cvObject$KNN.testPrediction,theCVfolds=Loops,main="KNN",cex=0.90)

ci <- epi.tests(rp$predictionTable)
AccCITable <- rbind(AccCITable,ci$elements$diag.acc)
BErrorCITable <- rbind(BErrorCITable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
rp <- plotModels.ROC(ProstateModelBin$cvObject$Models.testPrediction,theCVfolds=Loops,predictor="Prediction",main="B:SWiMS",cex=0.90)

ci <- epi.tests(rp$predictionTable)
AccCITable <- rbind(AccCITable,ci$elements$diag.acc)
BErrorCITable <- rbind(BErrorCITable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
rp <- plotModels.ROC(ProstateModelBin$cvObject$Models.testPrediction,theCVfolds=Loops,predictor="Ensemble.B.SWiMS",main="Ensembe B:SWiMS ",cex=0.90)

ci <- epi.tests(rp$predictionTable)
AccCITable <- rbind(AccCITable,ci$elements$diag.acc)
BErrorCITable <- rbind(BErrorCITable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
Support Vector Machine(SVM) Analysis
ProstateModelBin$cvObject$Models.testPrediction$usrFitFunction_Sel <- ProstateModelBin$cvObject$Models.testPrediction$usrFitFunction_Sel -0.5
ProstateModelBin$cvObject$Models.testPrediction$usrFitFunction <- ProstateModelBin$cvObject$Models.testPrediction$usrFitFunction -0.5
rp <- plotModels.ROC(ProstateModelBin$cvObject$Models.testPrediction,theCVfolds=Loops,predictor="usrFitFunction",main="Filtered:SVM",cex=0.90)

ci <- epi.tests(rp$predictionTable)
AccCITable <- rbind(AccCITable,ci$elements$diag.acc)
BErrorCITable <- rbind(BErrorCITable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
rp <- plotModels.ROC(ProstateModelBin$cvObject$Models.testPrediction,theCVfolds=Loops,predictor="usrFitFunction_Sel",main="B:SWiMS/SVM",cex=0.90)

ci <- epi.tests(rp$predictionTable)
AccCITable <- rbind(AccCITable,ci$elements$diag.acc)
BErrorCITable <- rbind(BErrorCITable,1-0.5*(ci$elements$sensitivity+ci$elements$specificity))
Barplots of Accuracy and Balanced Error
CVthesets <- c("LASSO","KNN","B:SWiMS","B:SWiMS Ensemble","SVM:Filterd","SVM:BSWIMS")
bp <- barPlotCiError(as.matrix(AccCITable),metricname="Accuracy",thesets=CVthesets,themethod="CV",main="Accuracy",args.legend = list(x = "bottomright"))

bp <- barPlotCiError(as.matrix(BErrorCITable),metricname="Balanced Error",thesets=CVthesets,themethod="CV",main="Balanced Error",args.legend = list(x = "topright"))

B:SWiMS Feature Plots
baggProstateBSWiMS <- baggedModel(ProstateModelBin$cvObject$allBSWiMSFormulas.list,Prostate,type="LOGIT",Outcome="Class")
#>
#> Num. Models: 980 To Test: 204 TopFreq: 50 Thrf: 1 Removed: 63
#> ..................................................................................................
cf <- length(ProstateModelBin$cvObject$allBSWiMSFormulas.list)/(Loops*Repeats)
namestoShow <- names(baggProstateBSWiMS$coefEvolution)[-c(1,2)]
frac = 0.25*Loops*Repeats
namestoShow <- namestoShow[baggProstateBSWiMS$frequencyTable[namestoShow]>=frac]
fnshow <- min(11,length(namestoShow))
barplot(baggProstateBSWiMS$frequencyTable[namestoShow],las = 2,cex.axis=1.0,cex.names=0.75,main="B:SWiMS Feature Frequency")

n <- network::network(cf*baggProstateBSWiMS$formulaNetwork[1:fnshow,1:fnshow], directed = FALSE,ignore.eval = FALSE,names.eval = "weights")
gplots::heatmap.2(cf*baggProstateBSWiMS$formulaNetwork[namestoShow,namestoShow],trace="none",mar=c(10,10),main="B:SWiMS Formula Network")

ggnet2(n, label = TRUE, size = "degree",size.cut = 3,size.min = 1, mode = "circle",edge.label = "weights",edge.label.size=4)

LASSO Feature Plots
baggProstateLASSO <- baggedModel(ProstateModelBin$cvObject$LASSOVariables,Prostate,type="LOGIT",Outcome="Class")
#>
#> Num. Models: 51 To Test: 109 TopFreq: 46 Thrf: 1 Removed: 40
#> .....
toshow <- sum(baggProstateLASSO$frequencyTable>=frac)
fnshow <- min(11,length(baggProstateLASSO$frequencyTable))
barplot(baggProstateLASSO$frequencyTable[1:toshow],las = 2,cex.axis=1.0,cex.names=0.75,main="LASSO Feature Frequency")

n <- network::network(baggProstateLASSO$formulaNetwork[1:fnshow,1:fnshow], directed = FALSE,ignore.eval = FALSE,names.eval = "weights")
gplots::heatmap.2(baggProstateLASSO$formulaNetwork[1:toshow,1:toshow],trace="none",mar=c(10,10),main="LASSO Formula Network")

ggnet2(n, label = TRUE, size = "degree",size.cut = 3,size.min = 1, mode = "circle",edge.label = "weights",edge.label.size=4)

Venn Diagrams
Here I will explore which features are similar between the LASSO and the BSWiMS models
pvalues <- p.adjust(1.0-pnorm(ProstateModelBin$univariateAnalysis$ZUni),"BH")
topunivec <- as.character(ProstateModelBin$univariateAnalysis$Name[pvalues<0.05])
tob <- baggProstateBSWiMS$frequencyTable>frac
topBSwims <- as.character(names(baggProstateBSWiMS$frequencyTable[tob]))
tob <- baggProstateLASSO$frequencyTable>frac
topLASSO <- as.character(names(baggProstateLASSO$frequencyTable[tob]))
featurelist <- list(Univariate=topunivec,CVLASSO=topLASSO,BSWIMS=topBSwims)
vend <- venn(featurelist)
vgroups <- attr(vend, "intersections")
legend("center",vgroups$`Univariate:CVLASSO:BSWIMS`,cex=0.75)
